DISTRIBUTED POWER CONTROL AND MONITORING SYSTEM

INSTALLATION & OPERATION GUIDE
G2-SERIES
About Carling Technologies

FOUNDED IN 1920

Since its founding, Carling Technologies has continually forged a tradition of leadership in quality and product innovation.

There are few products that Carling Technologies hasn’t turned “ON” and fewer industries that haven’t turned to Carling for solutions. With ISO and TS registered manufacturing facilities and technical sales offices worldwide, Carling ranks among the world’s largest manufacturers of circuit breakers, switches, power distribution units, digital switching systems and electronic controls.

SWITCHES & CONTROLS
- Rocker
- Toggle
- Pushbutton
- Rotary

CIRCUIT PROTECTION
- Hydraulic-Magnetic
- Thermal
- GFCI / ELCI

CUSTOM SOLUTIONS
- PDU’s
- Keypads
- Control Modules

MULTIPLEXED POWER SYSTEMS
- HMI Devices & I/O Modules
- Programmable Displays
- Data Communication Interfaces
- Electrical Systems Monitoring

STRATEGIC MARKETS SERVED:
- On/Off Highway
- Marine
- Telecom/Datacom
- Military
- Renewable Energy

GLOBAL LOCATIONS:

Carling Technologies
World Headquarters
Hartford, CT, USA
ISO9001:2008
ISO/TS16949:2009

Mactron
Phoenix, AZ, USA

Carling Technologies
Brownsville, TX, USA
ISO9001:2008
ISO/TS16949:2009

Carling Technologies
Guadalajara, Mexico
ISO9001:2008
ISO/TS16949:2009

Carling Technologies
Jupiter, FL, USA

GLOBAL LOCATIONS:

Carling Technologies
European Headquarters
Exeter, UK
ISO9001:2008
ISO/TS16949:2009

Carling Technologies
Kowloon, Hong Kong
ISO9001:2008
ISO/TS16949:2009

Carling Technologies
Zhongshan, China
ISO9001:2008
ISO/TS16949:2009

COMPETITIVE ADVANTAGES+

Vertical Integration
Reliable & On-Time Delivery
Excellent Customer Service
Innovative & Eco-Friendly Products

OTHER SERVED INDUSTRIES:

- Medical
- Industrial Control
- Audio / Visual
- Commercial Food
- HVAC
- Floor Care
- Generators
- Small Appliances
- Security Systems
- Test & Measurement

WORLDWIDE NUMBERS:

2000+ EMPLOYEES
150+ ENGINEERS
70+ DISTRIBUTORS
50+ REP FIRMS
Table of Contents

System Overview, Certifications .. 2
User Information .. 3
Installation Guide Outline ... 4

Multi-Function Displays (8 & 13.3 inch)

Overview, Configuration: Standard Screen Layout 6
Operation: Function, Standard Pages 8
Home Page, Basic Touchscreen Navigation 8
Hot Button, Breaker Buttons Indicators 9
Status Indicators, About, Clean Screen 10
Commands & Settings, Night Mode 11
Power Management, Shutdown 11
Vessel Status, Bilge, Tank Level, Alerts 12
Maintenance, General Specifications 13
Dimensional Specifications ... 14

AC Power Distribution Unit (8, 13 & 19 Position)

Overview, Configuration: 16
Part Numbers, Breaker Slot/Offset 17
Breaker Control by Discrete I/O 18
AC Breaker Assignment Considerations 18
AC Main Connections .. 19
Installation: Mounting, AC Main Connections 20
AC Branch Circuit & CAN Connections 20
Operation: Standard Screen Layout 21
CAN LEDs, AC Processor Protection Circuit 22
Manual Operation .. 22
Maintenance: Breaker Replacement 23
AC Processor Protection Circuit Replacement 26
General Specifications ... 28
Dimensional Specifications .. 29

DC Power Distribution Unit (8 & 16 Position)

Overview, Configuration: 32
Inrush & Trip Delays, Automatic ECB Control 33
LED Configuration & Control 34
Installation: Mounting, Power Input, Power Output 35
Power Connector Pin Out, CAN Connections 36
Operation: ECB Operation ... 36
ECB Status, ECB Error, Standard Screen Layout 37
Manual Operation/Overrides 38
Maintenance: ... 38
ECB Replacement ... 39
Fuse Replacement ... 40
General Specifications ... 41
Dimensional Specifications .. 42

Network Power Supply

Overview, Installation: ... 44
Typical Installation Diagrams 45
Operation: Standard Screen Layout 46
Maintenance, General Specifications 46
Dimensional Specifications .. 47

Battery Monitor

Overview, Installation: ... 48
Typical Installation Diagram, Harness Cable 49
Operation: Standard Screen Layout 50
Maintenance, General Specifications 50
Dimensional Specifications .. 51

AC Power Monitor

Overview, Installation: ... 52
AC Power Monitor Installations 53
Operation ... 54
Standard Screen Layout ... 55
Maintenance, General Specifications 55
Dimensional Specifications .. 56

System Interface Unit Monitor (SIU)

Overview, Configuration: .. 57
Signal Input ... 57
Output Message, Signal Examples, Blocking Diodes 58
Installation: Connections .. 59
Operation: Standard Screen Layout 60
Maintenance ... 60
General & Dimensional Specifications 61

NMEA 2000® Network Installation Guide

Network Basics .. 62
Cable Distance, Drop Line Length 63
Number of Devices, NMEA 2000 Cable 64
NMEA 2000 Connectors, Terminators 64
Supplying Power, End & Middle-Powered Network 64
Voltage Drop, Checking Network 65

Trouble Shooting Guide

Multi-Function Display, Battery Monitor 66
DC Power Distribution Unit, Network Power Supply 67
AC Power Distribution Unit ... 68
System Interface Unit Monitor 68
AC Power Monitor ... 69
NMEA 2000 Parameter Group Numbers 69

Appendix .. 70
OctoPlex® System Overview

The Carling Technologies® OctoPlex® system puts the user in complete control of all AC and DC loads within the vessel. Utilizing an NMEA 2000® CAN bus network, system reliability and safety are achieved through a redundant architecture that eliminates single point failures. The OctoPlex system offers significant weight reduction in wiring and reduced installation complexity, while also allowing for the monitoring and control of common NMEA 2000 marine devices, such as compass, GPS, tank level adapters and more. Field-replaceable AC and DC circuit breakers can be controlled remotely through the NMEA 2000 network, allowing panels to be placed in remote locations, thereby eliminating the need for traditional large electrical panels.

Through the use of a Multi-Function Display, Carling Technologies has created a fully configurable and/or customizable user interface. Acting as the main human interface of the system, the Multi-Function Display brings the system functions, status reports and alarms directly to the user.

The OctoPlex suite of products also includes the Network Power Supply (NPS), Battery Monitor, System Interface Unit Monitor (SIU), AC Monitor, AC Distribution Units (8, 13, & 19 positions) & DC Distribution Units (8 & 16 positions).

Certifications

- **CE Approved**
 - IEC 60533 Electrical and Electronic Installations in Ships
 - IEC 60945 Maritime Navigation and Radio communications Equipment and Systems

- **NMEA 2000® Approved**
 - Certified, Category B

- **Lloyd’s Type Approved**
 - Test Specification #1, ENV2 Certificate No. 10/00021
The purpose of the OctoPlex® Installation Guide is to educate the system users and/or installers on the components that create the OctoPlex system. Its primary purpose is not only to educate, but also act as a troubleshooting guide that will aide in making sure that the system is operating to its full potential as designed or intended.

The OctoPlex Installation Guide serves as a reference guide only. For more information contact Carling Technologies® at sales@carlingtech.com or visit www.carlingtech.com.

A periodic check of all mounting hardware and connections is recommended. The OctoPlex products are not ignition protected devices and shall not be installed in areas with combustible fumes.

Disclaimer: With respect to the use or application of the OctoPlex System and/or its components, Carling Technologies Inc.’s liability to the installer or user shall be limited to direct economic damage or loss, provided in any and all circumstances, the guidelines herein are strictly followed. NOTWITHSTANDING THE FOREGOING IN NO EVENT SHALL CARLING TECHNOLOGIES, INC. BE LIABLE FOR ANY INCIDENTAL, SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES, WHETHER RESULTING FROM THE USE, MISUSE OR INABILITY TO USE THIS PRODUCT OR FROM DEFECTS IN THIS PRODUCT. Some states do not allow the exclusion on incidental or consequential damages, so the above limitation may not apply to customers in those states.

All illustrations contained in this Installation and Operation Guide are for reference purposes only. Nothing contained in this Guide shall replace or modify the requirements of any Industry Standard applicable to wire or other protection, including without limitation, those of the American Boat and Yacht Council (ABYC); the National Electric Code (NEC); and/or the National Fire Protection Association (NFPA). Failure to install the OctoPlex System or any components thereof in compliance with any such Industry Standard may limit the warranties made by Carling Technologies, Inc. See warranty information for further details.

www.carlingtech.com/octoplex-warranty

The contents of this installation guide are copyright 2016 Carling Technologies, Inc. This Guide or its contents or any part thereof shall not be copied or otherwise replicated, or, distributed to third parties and may only be used by the installer builder, owner, operator or other user for the purposes described herein.

OctoPlex is a registered trademark of Carling Technologies, Inc.
NMEA 2000 and the NMEA logo are registered trademarks of the National Marine Electronics Association.
Lloyd’s Type Approved logo is a registered trademark of Lloyd’s Register Group Service Limited, 2016.
Installation Guide Outline

› Multi-Function Display A3416 (8 inch), A3417 (13.3 inch)
› 8 Circuit AC Power Distribution Unit A3000-08-[]
› 13 Circuit AC Power Distribution Unit A3000-13-[]
› 19 Circuit AC Power Distribution Unit A3000-19-[]
› 8 Circuit DC Power Distribution Unit A3650
› 16 Circuit DC Power Distribution Unit A3655
› Network Power Supply A3205-[]
› Battery Monitor A3680
› AC Power Monitor A3770
› System Interface Unit Monitor (SIU) A3470

1 AC Power Distribution Unit 8 Position
Provides AC circuit protection, remote actuation and status monitoring for up to eight positions (single or double pole breakers).

9 Battery Monitor
Measures and reports 12 and/or 24 voltage, single current and up to four battery temperatures. Configurable alarm thresholds for voltage, current and temperature can be annunciated via the Multi-Function Display.

8 AC Power Distribution Unit 13 or 19 Position
Provides AC circuit protection, remote actuation and status monitoring for up to nineteen positions (single, double or three-pole breakers).

7 AC Power Monitor
Measures and reports status of up to four AC lines including voltage, current and frequency. It can be used in 110V, 220V, three phase and 240V European applications.
2 DC Power Distribution Unit 8 Position
Provides DC circuit protection and remote control for up to eight DC circuits. Each circuit has a fully configurable trip profile.

3 Multi-Function Display
A configurable 8 or 13 inch dedicated Multi-Function Display that provides an extremely simple interface for system control and monitoring.

4 System Interface Unit Monitor (SIU)
Monitors and reports the status for up to 34 discrete DC inputs. Also suitable for reporting status of bilge float switches, hatch/door open/closed, dimming, etc.

5 DC Power Distribution Unit 16 Position
Provides DC circuit protection and remote control for up to sixteen DC circuits. Each circuit has a fully configurable trip profile.

6 Network Power Supply
Provides regulated power to the dual NMEA 2000 network.
MULTI-FUNCTION DISPLAYS
A3416: 8 INCH / A3417: 13.3 INCH

The OctoPlex® A3416/A3417, Multi-Function Displays allow for the users to control and monitor the OctoPlex system. This unit provides interface with two NMEA2000 CAN Buses, one Ethernet, one USB 2.0 port and two power inputs (18 to 32 VDC) for redundancy.

Product Highlights:
- Solid State Hard Drive
- Fanless
- Flush or VESA Mounting
- 8” TFT LCD with LED Backlight:
 - Widescreen 5:3 Aspect Ratio
 - 800 x 480 pixels
 - 600 nits Brightness (Optically Bonded)
- 13.3” TFT LCD with LED Backlight:
 - Widescreen 16:10 Aspect Ratio
 - 1280 x 800 pixels
 - 500 nits Brightness (Optically Bonded)

Configuration
The configuration of the OctoPlex Multi-Function Display is performed by an authorized OctoPlex technician. If you require changes to your Multi-Function Display, contact your vessel's manufacturer or your OctoPlex representative for assistance.

Standard Screen Layouts:

AC Power Distribution Unit
The AC Distribution Power Unit screen shows the AC Breaker Label and the current state of the AC Breakers. State of the breaker options include: ON, OFF, Trip, Group Control (ON or OFF), Load Shedding (ON or OFF) or Locked Status (Locked ON or Locked OFF). The user can also scroll forward or backwards to select a specific AC Distribution Power Unit (Example AC Panel #3). See AC Power Distribution Unit section for additional information.
Multi-Function Displays (A3416 & A3417) - Configuration, Installation

DC Power Distribution Unit
The DC Distribution Power Unit screen shows the DC Breaker Label and the current state of the DC Breakers. State of the breaker options include: ON, OFF, Trip, Group Control (ON or OFF), or Locked Status (Locked ON or Locked OFF). The user can also scroll forward or backwards to select a specific DC Distribution Power Unit (Example DC Panel #1). See DC Power Distribution Unit section for additional information.

Network Power Supply
The NPS screen shows Status of the input power, Source of power (AC, DC1 DC2), CAN A and CAN B status, CAN A and CAN B Voltage and Current readings, and the internal box temperature. See Network Power Supply section for additional information.

Battery Monitor
The Battery Monitor screen shows the status (voltage, current, temperature & state of charge) of the battery banks being monitored. Specific configuration and installation of the battery monitor is defined by the boat builder. See Battery Monitor section for additional information.

AC Power Monitor
The AC Power Monitor page shows the status (voltage, current and frequency) of all AC line inputs. Specific configuration and installation of AC monitors are defined by the boat builder. See AC Power Monitor section for additional information.

System Interface Unit Monitor (SIU)
The SIU screen shows the 34 Discrete I/O indicators that are being monitored by the SIU. These indicators cannot be acknowledged by the user; up to Qty. 10 also appear on the bottom of most pages. See System Interface Unit Monitor section for additional information.

NOTE
These pages can vary between installations, as format is determined and/or customizable by the boat builder or owner. The screenshots shown are standard layout pages.

Installation
The Multi-Function Display was designed to be installed in an environmentally protected, non-explosive area of the vessel. Take precautions to mount the display in an area that will be away from direct exposure to the weather and combustible fumes. Multi-Function Displays should be installed such that the back of the unit is accessible. Access to the back and bottom is required for configuration purposes. The included USB Extension cable must be installed to one of the USB Ports on the bottom of the unit and the other end mounted in an easy to access location, such as the front panel. This USB Port will be used for future software and configuration updates. It is also recommended to connect a wireless keyboard & mouse to the second USB Port for use when making changes to the configuration file. If the internet is available on the vessel, it is recommended to connect the screens Ethernet port to the vessel’s LAN for remote access.

CAN Connections
Two male Micro-C connectors are provided on the back of the Multi-Function Display (MFD) for connection to the primary and secondary CAN bus via drop cables.

NOTE
Use the shortest drop length possible when connecting the Multi-Function Display to the CAN backbone. NMEA 2000 spec is maximum 6 meters for drop cables.
Operation

Function

The display is used for control and monitoring of the OctoPlex system and its components. It provides an interface for controlling the state of AC and DC breakers and displaying their status, along with features for monitoring System Input Unit (SIU) signals, Battery Monitor data, and AC Power Monitor data and status. Additional controls are provided to gain access to configuration pages for:

- Switch / Breaker Lockout
- Switch / Breaker Status
- Switch / Breaker Groups
- Switch / Tripped Breaker Alerts
- AC Load Shedding

Standard Pages

Standard display pages are accessed from the HOME Page. The HOME Page is defined as the page that is initially displayed when the system is powered-up.

Home Page

The HOME page is designed as an at-a-glance status of the vessel and selected alerts are indicated on this page. Depending on the configuration of the vessel, alerts may be (but not limited to) Navigation Lights, Bilge & Sump Pumps, Fans, Hatches, etc.

Arranged around the border of the HOME Page are selectable Hot Buttons which will direct the user to other functions such as Electrical Circuits, AC & DC Power Monitoring, Tank Monitors, and Bilge Pump Status, etc. The specific functions may vary depending on the available sensors installed on the vessel.

On every page of the display there is a banner along the bottom of the screen which indicates the Operating Mode in the bottom right corner of the system for alerts. When an alert is triggered, a message will appear in the banner in the bottom left corner.

NOTE

The configuration of the Home Page and Sub-pages can vary between installations as the format is determined by the boat builder and selected OctoPlex Options.

Basic Touchscreen Navigation

The display interface is designed to be user intuitive and easy to navigate. Hot buttons are clearly marked to provide the user required control & status. Switches and breakers are defined with rounded sides and traditional breaker graphics with pre-defined color schemes.
Hot Button

A Hot Button is used for navigating around the OctoPlex® system. Touch the desired Hot Button to navigate through selected functions.

Switch / Breaker Button Indicators

OctoPlex Switch/Breaker Buttons are displayed as indicators with a pre-defined color scheme. Touching a Breaker button will change the state of the load.

<table>
<thead>
<tr>
<th>Color Code Guide</th>
<th>Breaker Status</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Not Active; Unavailable</td>
<td>This is a switch/breaker that is currently not active. The distribution panel is most likely not receiving any power (AC or DC) or the distribution panel’s main breaker is in the OFF position. This indication can also be present if communication to the multi-function display is lost.</td>
</tr>
<tr>
<td></td>
<td>Active; OFF</td>
<td>This is a switch/breaker that is active, but currently in the OFF position. Pressing the button will turn the breaker ON.</td>
</tr>
<tr>
<td></td>
<td>Active; ON</td>
<td>This is a switch/breaker which is active and currently in the ON position. Pressing the button will turn the breaker OFF.</td>
</tr>
<tr>
<td></td>
<td>Active; TRIPPED</td>
<td>This is a switch/breaker that is active, but has been tripped by an over-current situation. Pressing and holding the button will bring up a sub menu, which allows the user to reset the breaker (turn OFF) and then turn the breaker back ON with an additional press.</td>
</tr>
<tr>
<td></td>
<td>Active; Locked OFF</td>
<td>This is a switch/breaker that has been locked in the OFF position. The ‘UNLOCK’ button can be used to unlock this breaker.</td>
</tr>
<tr>
<td></td>
<td>Active; Locked ON</td>
<td>This is a switch/breaker that has been locked in the ON position. The ‘UNLOCK’ button can be used to unlock this breaker.</td>
</tr>
<tr>
<td>![GROUP CONTROL](GROUP CONTROL.png)</td>
<td>Active; Group OFF</td>
<td>This is a switch/breaker that has been setup with Group Control OFF.</td>
</tr>
<tr>
<td>![GROUP CONTROL](GROUP CONTROL.png)</td>
<td>Active; Group ON</td>
<td>This is a switch/breaker that has been setup with Group Control ON.</td>
</tr>
<tr>
<td></td>
<td>Active; Load Shedding OFF</td>
<td>This is a breaker with Load Shedding OFF (AC Only).</td>
</tr>
<tr>
<td></td>
<td>Active; Load Shedding ON</td>
<td>This is a breaker with Load Shedding ON (AC Only).</td>
</tr>
<tr>
<td>![LOCAL OVERRIDE](LOCAL OVERRIDE.png)</td>
<td>Active; Local Override OFF</td>
<td>DC Unit switched into Local Mode; Electronic Circuit Breaker (ECB) toggle switch in the OFF Position (DC Only).</td>
</tr>
<tr>
<td>![LOCAL OVERRIDE](LOCAL OVERRIDE.png)</td>
<td>Active; Local Override ON</td>
<td>DC Unit switched into Local Mode; Electronic Circuit Breaker (ECB) toggle switch in the ON Position (DC Only).</td>
</tr>
</tbody>
</table>
Status Indicators

Status Indicators are indicators that appear on the bottom of the screen or on selected pages. These are NOT buttons that the user can acknowledge; they are status indications from the System Interface Unit Monitor (SIU) that are transmitted on the OctoPlex® system.

<table>
<thead>
<tr>
<th>Color Code</th>
<th>Breaker Status</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Inactive</td>
<td>This is a system status indication that is currently inactive.</td>
</tr>
<tr>
<td></td>
<td>Active; OFF</td>
<td>This is a system status indication that is currently active, but is not ON or in an alert condition.</td>
</tr>
<tr>
<td></td>
<td>Active; ON</td>
<td>This is a system status indication that is currently active, and is ON.</td>
</tr>
<tr>
<td></td>
<td>Active; ALERT</td>
<td>This is a system status indication that is currently active, and is in an alert condition.</td>
</tr>
</tbody>
</table>

These Status Indicators below are commonly found at the bottom of each page in the Touchscreen. In this situation, all the indicators are active and ‘OFF’.

Banner Alerts appear at the bottom of the screen to alert the user of an active alert. It allows the user to acknowledge the alert and depending on how the parameters are set. The Alert Table Editor will determine how to address the alarm/alert.

Commands & Settings

A variety of user options are available for customization directly from the touch screen. To access the Commands and Settings, press the “SHOW TABS” Hot Button on the Home Page. A tab will then appear from the right side of the screen labeled ‘Commands & Settings’. Press the Commands & Settings tab to display the menu. Format is determined by the boat builder.

Accessible areas within the Commands & Settings menu include:
- About
- Clean Screen
- Night Mode
- Power Management: Switch / Breaker Status
- Shutdown
Commands & Settings (continued)

Other areas within the Commands & Settings menu require a password and can only be accessed by an OctoPlex Authorized technician. For more information on advanced configurable commands and settings, contact your OctoPlex representative.

About

The About dialog contains Software and Hardware version information as well as copyright and other legal information. The user can also access basic diagnostic information and view a list of devices connected to the CAN bus network from the “About” dialog.

Clean Screen

The Clean screen dialog provides a way to temporarily disable all touch functionality from the screen so that it may be cleaned without triggering any undesired actions. Pressing the Clean Screen Hot Button from within the Clean Screen dialog will disable touch functionality for 20 seconds.

Night Mode

The Night Mode screen places a red filter over the screen for optimal viewing at night. To enable Night Mode, touch the Night Mode Hot Button from the Commands & Settings menu. When selected, the Night Mode Hot Button changes to Day Mode. To exit Night Mode and remove the red filter, return to the Commands & Settings menu and touch the Day Mode Hot Button.

Power Management: Switch / Breaker Status

Switch / Breaker Status can be accessed via the Power Management sub-menu and will display information about a selected switch / breaker to be used in a troubleshooting process. To view a Switch / Breaker Status, touch Power Management from the Command & Settings menu then touch Switch / Breaker Status from the sub-menu.

Shutdown

To shut down (turn off) the OctoPlex Multi-Function Display, turn off the DC breaker supplying power to the unit, if the Multi-Function Display is connected to an ECB.

Alternately, you can hold the power button on the bottom of the Multi-Function Display.
Vessel Status / Monitoring
When a System Interface Unit Monitor (SIU) is included in the installation, indicators may be incorporated into the touch screen configuration to display status of the inputs being monitored. Generally, a red indicator will indicate an “off” or “inactive” state and green will indicate an “on” or “active” state.

This page can vary between installations, as format is determined and/or customizable by the boat builder or owner.

NOTE

Bilge Monitoring / Control
This page displays the current status of the bilge as well as control of the bilge pumps. Standard layouts include indications, which will show if a bilge pump is activated, a float switch is receiving power or a high water alarm is activated.

Builders may choose to control the bilge pumps outside of the OctoPlex System. In this case, the monitoring functions may still connect to the System Interface Unit Monitor, but the control functions would not be available.

Tank Level Monitoring
When Tank Level Adapters / Monitors are included in the installation this page will show their status/levels.

The OctoPlex system has the capability to only display the data which is transmitted from the installers NMEA 2000 certified tank level adapter. Please consult with either the boat or component manufacturer should any issues present themselves with regards to tank level monitoring.

NOTE

Alerts
Alerts can be configured to respond to a variety of conditions such as but not limited to:
• Tripped breakers
• Battery values out of tolerance
• Configured SIU inputs

When an Alert has been activated, touching the indicator in the bottom left corner of the Multi-Function Display will silence it. Cancellation of the alarm will depend on parameters set within the Alert Table Editor. Consult your authorized OctoPlex technician about modifying alert parameters.
Multi-Function Displays (A3416 & A3417) - Maintenance, General Specifications

Maintenance

The Multi-Function Display requires no maintenance. If the touch screen requires cleaning, use a soft damp cloth and wipe the display gently while utilizing the Clean Button under the Commands & Settings menu. Do not rub aggressively as this may scratch the touch screen area. Any service or repair issues should be handled by a factory authorized technician.

CAUTION!

Do not spray any cleaning solvents directly onto the display area.

General Specifications

Electrical
- Operating Voltage: 18-32 Volts DC, Dual Inputs
- Load Equivalence Number (LEN): 1

Mechanical
- Dimensions:
 - 8": 9.29" x 6.54" x 2.01"
 - (236 mm x 166 mm x 51 mm)
 - 13.3": 13.98" x 9.78" x 2.28"
 - (355 mm x 248.5 mm x 58 mm)
- CAN Bus connectors: Two (2) Micro-C Male
- Mounting: 4 x M4 VESA Mounting 75mm x 75mm
- IP Rating: IP66 Front; IP22 Rear

Environmental
- Operating Temperature: -15°C to +55°C (Humidity up to 95%)
- Storage Temperature: -20°C to +60°C (Humidity up to 95%)
- Humidity: Up to 95%
- Weight:
 - 8": 4.2 lbs (1.9 kg)
 - 13.3": 9.7 lbs (4.4kg)

Certifications
- NMEA 2000
- CE
- IEC 60945 Maritime Navigation and Radio Communication Equipment and Systems
Dimensional Specifications: in. [mm]

8 Inch - Multi-Function Display
A3416

- 9.29 [236.00] in.
- 6.54 [166.00] in.
- 0.118 [3.00] PANEL
- 0.24 [6.00] in.
- 1.65 [42.00] in.
Dimensional Specifications: in. [mm]

13.3 Inch - Multi-Function Display

A3417

<table>
<thead>
<tr>
<th>Dimension</th>
<th>Unit</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>PANEL</td>
<td>in.</td>
<td>0.118 [3.00]</td>
</tr>
<tr>
<td></td>
<td>mm</td>
<td>3.00</td>
</tr>
<tr>
<td>Width</td>
<td>in.</td>
<td>9.78 [248.50]</td>
</tr>
<tr>
<td></td>
<td>mm</td>
<td>248.50</td>
</tr>
<tr>
<td>Height</td>
<td>in.</td>
<td>13.98 [355.00]</td>
</tr>
<tr>
<td></td>
<td>mm</td>
<td>355.00</td>
</tr>
<tr>
<td>Depth</td>
<td>in.</td>
<td>0.24 [6.00]</td>
</tr>
<tr>
<td></td>
<td>mm</td>
<td>6.00</td>
</tr>
<tr>
<td>Depth of Panel</td>
<td>in.</td>
<td>1.93 [49.00]</td>
</tr>
<tr>
<td></td>
<td>mm</td>
<td>49.00</td>
</tr>
</tbody>
</table>

![Multi-Function Display Diagram](image-url)
The AC Power Distribution units provide the boat builder with up to 8, 13 or 19 remotely controlled hydraulic-magnetic circuit breakers in one package that can be mounted virtually anywhere in the vessel. AC Circuit breakers are available from 1 to 100 amps and are remotely controlled via external solenoids. Each breaker can also be manually actuated. The AC units utilize a 16 bit microprocessor that controls the on/off function of each circuit breaker and provides interfacing to a dual CAN bus network. The AC unit enclosures are made from white, high strength, injection molded plastic that will provide years of protection in any environment.

Product Highlights (8 Position Unit):
- 50 Amps Maximum Capacity
- Remote Actuation of Breakers
- Dual CAN BUS Communication

Product Highlights (13 / 19 Position Unit):
- 100 Amps Maximum Capacity
- Remote Actuation of Breakers
- Dual CAN BUS Connection/Communication
- Three Phase Power Capability; 120/208VAC or 230/415VAC

Configuration

Configuration of an OctoPlex® AC Unit and its associated functions can be performed running G2 Analyzer on a computer with a CAN interface. Consult the G2 Analyzer User’s Guide for complete details on adjusting configurable parameters. AC box configuration settings are initially loaded and controlled with the G2 Analyzer utility and contained in Box Configuration Files (BCF). The parameters below can be modified by using the Multi-Function Display.

G2 Analyzer Configuration Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Setting</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default State</td>
<td>ON, OFF, Last State</td>
<td>Circuit breaker state on network power up</td>
</tr>
<tr>
<td>Default Lock State</td>
<td>ON or OFF</td>
<td>Lock state on network power up</td>
</tr>
<tr>
<td>Default to Last State</td>
<td>ON or OFF</td>
<td>Last known state on network power up</td>
</tr>
<tr>
<td>Configuration Allowed</td>
<td>YES or NO</td>
<td>Allow user to modify Circuit Breaker via Multi-Function Display</td>
</tr>
<tr>
<td>Alarm on Trip</td>
<td>YES or NO</td>
<td>Audible alarm when breaker trips</td>
</tr>
</tbody>
</table>

Manufacturer reserves the right to change product specification without prior notice. Please refer to our website for the latest details.
AC Power Distribution Unit (A3000) - Configuration

Part Numbers

<table>
<thead>
<tr>
<th>Part Number 1</th>
<th>Description</th>
<th>Number of Positions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>A3000-X-1</td>
<td>AC Power Distribution Unit - 120V (No Main Breaker)</td>
<td>X</td>
</tr>
<tr>
<td>A3000-X-1M</td>
<td>AC Power Distribution Unit - 120V (With Main Breaker)</td>
<td>X</td>
</tr>
<tr>
<td>A3000-X-2</td>
<td>AC Power Distribution Unit - 120/240V (No Main Breaker)</td>
<td>X</td>
</tr>
<tr>
<td>A3000-X-2M</td>
<td>AC Power Distribution Unit - 120/240V (With Main Breaker)</td>
<td>X</td>
</tr>
<tr>
<td>A3000-X-3</td>
<td>AC Power Distribution Unit - 120/208V (No Main Breaker)</td>
<td>N/A</td>
</tr>
<tr>
<td>A3000-X-3M</td>
<td>AC Power Distribution Unit - 120/208V (With Main Breaker)</td>
<td>N/A</td>
</tr>
<tr>
<td>A3000-X-4</td>
<td>AC Power Distribution Unit - 230V Single Pole (No Main Breaker)</td>
<td>X</td>
</tr>
<tr>
<td>A3000-X-4M</td>
<td>AC Power Distribution Unit - 230V Single Pole (With Main Breaker)</td>
<td>X</td>
</tr>
<tr>
<td>A3000-X-5</td>
<td>AC Power Distribution Unit - 230V Double Pole (No Main Breaker)</td>
<td>X</td>
</tr>
<tr>
<td>A3000-X-5M</td>
<td>AC Power Distribution Unit - 230V Double Pole (With Main Breaker)</td>
<td>X</td>
</tr>
<tr>
<td>A3000-X-6</td>
<td>AC Power Distribution Unit - 230/415V (No Main Breaker)</td>
<td>N/A</td>
</tr>
<tr>
<td>A3000-X-6M</td>
<td>AC Power Distribution Unit - 230/415V (With Main Breaker)</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Notes:
1. "X" designates the number of breaker positions available for that voltage configuration; see Number of Positions Column
2. "N/A" is not available for this number of breakers and voltage configuration

Breaker Slot / Offset Load Circuit Relationship

The number of available circuit breakers in an AC Distribution Unit for loads will vary depending on the AC input power type 120V or 230V (Euro Single Phase), 240V or three Phase.

- Single Pole breakers: 120V and 230V Euro loads require a single breaker slot.
- Double Pole breakers: 240V loads requires two physical breaker slots.
- Three Pole breakers: 120/208V and 230/415V requires three physical breaker slots.

The AC Distribution Unit may contain different combinations of breaker; therefore, the total number of supported load circuits in a given unit will vary depending on the load type mix;

<table>
<thead>
<tr>
<th>AC Unit Type</th>
<th>120V / 230V Single Pole</th>
<th>240 Double Pole</th>
<th>3-Phase Triple Pole</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 Position</td>
<td>8</td>
<td>4</td>
<td>N/A</td>
</tr>
<tr>
<td>13 Position</td>
<td>13</td>
<td>6 (plus 1 SP)</td>
<td>4 (plus 1 SP)</td>
</tr>
<tr>
<td>19 Position</td>
<td>19</td>
<td>9 (plus 1 SP)</td>
<td>6 (plus 1 SP)</td>
</tr>
</tbody>
</table>

The Panel Breaker numbers, as identified on the panel cover, start with one at the top. The main breaker (when used) will occupy slots one through three depending on the main breaker configuration, single, double or triple pole.

NOTE

The highest AC Breaker Rating (amps) should be installed in lowest breaker position (i.e. Position 1, 2, etc.) to ensure proper load distribution. For example: Breaker Positions 1-2 has 100A breaker installed; breaker position 3 has 70A breaker installed; etc.
AC Power Distribution Unit (A3000) - Configuration

Breaker Control by Discrete I/O Function

Analog input signals to the System Interface Unit Monitor (SIU) can trigger a Discrete I/O function in the AC processor, which can be used to control the behavior of a Circuit Breaker. Sixteen Discrete I/O’s per AC Unit can be programmed. One Discrete I/O can control multiple breakers up to the unit limit. Discrete I/O functions are configured using G2 Analyzer.

<table>
<thead>
<tr>
<th>Discrete I/O</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turn On</td>
<td>Turn AC Breaker ON</td>
</tr>
<tr>
<td>Turn Off</td>
<td>Turn AC Breaker OFF</td>
</tr>
<tr>
<td>Off & Lock</td>
<td>Turn AC Breaker OFF and Lock in OFF position</td>
</tr>
</tbody>
</table>

AC Breaker Assignment Considerations

The relationship between the AC units physical breaker positions, the main breaker type & the load breaker assignment (Single Pole, Double Pole, Three Pole) must be taken into consideration & assigned accordingly to the Multi-Function Display AC Unit configuration. The table below illustrates this relationship.

<table>
<thead>
<tr>
<th>Unit Breaker Position</th>
<th>Single Pole</th>
<th>Group</th>
<th>Line</th>
<th>Double Pole</th>
<th>Group</th>
<th>Line</th>
<th>Three Pole</th>
<th>Group</th>
<th>Line</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Main L1</td>
<td>32</td>
<td>L1</td>
<td>Main L1</td>
<td>32</td>
<td>L1</td>
<td>Main L1</td>
<td>32</td>
<td>L1</td>
</tr>
<tr>
<td>2</td>
<td>Load 1</td>
<td>1</td>
<td>L1</td>
<td>Main L2</td>
<td>32</td>
<td>L2</td>
<td>Main L2</td>
<td>32</td>
<td>L2</td>
</tr>
<tr>
<td>3</td>
<td>Load 2</td>
<td>2</td>
<td>L1</td>
<td>Load 1</td>
<td>1</td>
<td>L1</td>
<td>Main L3</td>
<td>32</td>
<td>L3</td>
</tr>
<tr>
<td>4</td>
<td>Load 3</td>
<td>3</td>
<td>L1</td>
<td>Load 2</td>
<td>2</td>
<td>L2</td>
<td>Load 1</td>
<td>1</td>
<td>L1</td>
</tr>
<tr>
<td>5</td>
<td>Load 4</td>
<td>4</td>
<td>L1</td>
<td>Load 3</td>
<td>3</td>
<td>L1</td>
<td>Load 2</td>
<td>2</td>
<td>L2</td>
</tr>
<tr>
<td>6</td>
<td>Load 5</td>
<td>5</td>
<td>L1</td>
<td>Load 4</td>
<td>4</td>
<td>L2</td>
<td>Load 3</td>
<td>3</td>
<td>L3</td>
</tr>
<tr>
<td>7</td>
<td>Load 6</td>
<td>6</td>
<td>L1</td>
<td>Load 5</td>
<td>5</td>
<td>L1</td>
<td>Load 4</td>
<td>4</td>
<td>L1</td>
</tr>
<tr>
<td>8</td>
<td>Load 7</td>
<td>7</td>
<td>L1</td>
<td>Load 6</td>
<td>6</td>
<td>L2</td>
<td>Load 5</td>
<td>5</td>
<td>L2</td>
</tr>
<tr>
<td>9</td>
<td>Load 8</td>
<td>8</td>
<td>L1</td>
<td>Load 7</td>
<td>7</td>
<td>L1</td>
<td>Load 6</td>
<td>6</td>
<td>L3</td>
</tr>
<tr>
<td>10</td>
<td>Load 9</td>
<td>9</td>
<td>L1</td>
<td>Load 8</td>
<td>8</td>
<td>L2</td>
<td>Load 7</td>
<td>7</td>
<td>L1</td>
</tr>
<tr>
<td>11</td>
<td>Load 10</td>
<td>10</td>
<td>L1</td>
<td>Load 9</td>
<td>9</td>
<td>L1</td>
<td>Load 8</td>
<td>8</td>
<td>L2</td>
</tr>
<tr>
<td>12</td>
<td>Load 11</td>
<td>11</td>
<td>L1</td>
<td>Load 10</td>
<td>10</td>
<td>L2</td>
<td>Load 9</td>
<td>9</td>
<td>L3</td>
</tr>
<tr>
<td>13</td>
<td>Load 12</td>
<td>12</td>
<td>L1</td>
<td>Load 11</td>
<td>11</td>
<td>L1</td>
<td>Load 10</td>
<td>10</td>
<td>L1</td>
</tr>
<tr>
<td>14</td>
<td>Load 13</td>
<td>13</td>
<td>L1</td>
<td>Load 12</td>
<td>12</td>
<td>L2</td>
<td>Load 11</td>
<td>11</td>
<td>L2</td>
</tr>
<tr>
<td>15</td>
<td>Load 14</td>
<td>14</td>
<td>L1</td>
<td>Load 13</td>
<td>13</td>
<td>L1</td>
<td>Load 12</td>
<td>12</td>
<td>L3</td>
</tr>
<tr>
<td>16</td>
<td>Load 15</td>
<td>15</td>
<td>L1</td>
<td>Load 14</td>
<td>14</td>
<td>L2</td>
<td>Load 13</td>
<td>13</td>
<td>L1</td>
</tr>
<tr>
<td>17</td>
<td>Load 16</td>
<td>16</td>
<td>L1</td>
<td>Load 15</td>
<td>15</td>
<td>L1</td>
<td>Load 14</td>
<td>14</td>
<td>L2</td>
</tr>
<tr>
<td>18</td>
<td>Load 17</td>
<td>17</td>
<td>L1</td>
<td>Load 16</td>
<td>16</td>
<td>L2</td>
<td>Load 15</td>
<td>15</td>
<td>L3</td>
</tr>
<tr>
<td>19</td>
<td>Load 18</td>
<td>18</td>
<td>L1</td>
<td>Load 17</td>
<td>17</td>
<td>L1</td>
<td>Load 16</td>
<td>16</td>
<td>L1</td>
</tr>
</tbody>
</table>

18 Single Pole slots available Double Pole uses 2 positions Single Pole uses 1 position
Double Pole uses 2 positions Three Pole uses 3 positions
AC Main Circuit Breaker Installed - Unit Configurations

There are three distinct AC Distribution Unit configurations depending on the type of line input; each requires different hardware options depending on the input line configuration. This configuration must be determined prior to ordering the AC Units.

1. Single Phase 120VAC or Euro 230VAC
2. Single Phase Dual Line 120/240VAC
3. Three Phase 120/208VAC or 230/415VAC

Single Phase 120VAC or Euro 230VAC: Line Bus Bars 1 and 2 are connected together at the factory using a bus bar jumper.

Single Phase Dual Line 120/240VAC: Line Bus Bars 1 and 2 are not tied together at the factory, allowing two legs of 120/240VAC to be brought into the unit for single or double pole circuit breaker installation.

Three Phase 120/208VAC or 230/415VAC: Line Bus Bars 1, 2 and 3 are brought into the box separately allowing for single, double or three pole circuit breaker installation.

AC No Main Circuit Breaker Installed - Unit Configurations

Single Phase Dual Line 120/240VAC: Line Bus Bars 1 and 2 are not tied together at the factory, allowing two legs of 120/240VAC to be brought into the unit for single or double pole circuit breaker installation. Breaker position 1 is line 1, breaker position 2 is line 2, and then they alternate.
Installation

The AC Power Distribution Unit is designed to be installed in an environmentally protected, non-explosive area of the vessel. Take precautions to mount the unit in an area that will be away from direct exposure to water, weather and combustible fumes.

Mounting

These units should be mounted in a location that is accessible for manual/override control and serviceability. These units must be mounted in vertical position only. Installations in horizontal position (flat) with breakers facing up or down can compromise the accuracy of the AC circuit breaker function.

AC Main Connections

Depending on configuration, connection points are provided for single 120VAC, Single 240VAC (Euro), dual 120/240VAC or three phase (120/208VAC or 230/415VAC) AC line inputs. Bus bars are provided for AC neutral (White or Blue) and grounding (Green or Green-Yellow) conductors. Main feed wires entering the panel are secured to prevent strain using a screw down “clamp” provided at the opening on the outside of the panel.

Lethal voltages are present inside the AC unit. Verify that all AC power is shut off or disconnected before working inside the unit. **Required Torque** for each AC breaker terminal screw is 35 inch-lbs. This torque requirement must be applied to all circuit breaker terminal screws, no exceptions. Failure to properly torque each connection may result in damage to the AC Unit or vessel.

The installer is responsible for verifying that the wire gauge used for the main power feed is appropriately sized for the loads being fed from the AC unit. The unit is designed to accept up to #1 gauge wire for the main power feed. All personnel performing installation or maintenance work on the AC Unit will need to have a calibrated torque screwdriver in order to verify proper installation of the circuit breakers and associated connections.

AC Branch Circuit Connections

Branch circuit wires enter the AC Power Distribution Unit through the openings at the bottom of the panel. Line conductors are connected to their respective circuit breaker. Neutral and grounding conductors are connected to bus bars provided. Branch wires entering the panel are secured to prevent strain using a screw down “clamp” provided inside of the panel. Circuit breakers are in sequential order from top to bottom. “Tie bars” connecting circuit breaker handles for double and triple pole breakers must be used.

CAN Connections

Two male Micro-C connectors are provided at the bottom left side of the 8 Position or at the top left side of the 13/19 Position unit for connection to the primary and secondary CAN bus via drop cables.

Use the shortest drop length possible when connecting the AC Unit to the CAN backbone. NMEA 2000 spec is maximum 6 meters for drop cables.
Operation

Depending on the AC Unit power configuration, 120VAC, Single 240VAC (Euro), dual 120/240VAC or three phase (120/208VAC or 230/415VAC), there are two groups of up to three LED’s visible through the cover of the AC Power Distribution Unit. These LEDs signify that AC power is present inside the unit (“Power In”) and after the Main breaker (“Power Out”). As long as AC power is present, the AC Unit will be recognized by the Multi-Function Display (MFD). When AC power is not present, you will not be able to control the AC circuit breakers.

Standard AC Power Distribution Unit Screen Layouts

The AC Distribution Power Unit screen shows the AC Breaker Label and the current state of the AC Breakers. State of the breaker options include: ON, OFF, Trip, Group Control (ON or OFF), Load Shedding (ON or OFF) or Locked Status (Locked ON or Locked OFF). The user can also scroll forward or backwards to select a specific AC Distribution Power Unit (Example AC Panel #3).
CAN LEDs
The two LEDs labeled “BUS A” and “BUS B” indicate the status of their respective CAN buses, flashing approximately once a second which also serves as a “Heartbeat” indicator from the onboard processor. The possible colors, and their meaning are:

<table>
<thead>
<tr>
<th>LED Color</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flashing Green</td>
<td>Bus is healthy</td>
</tr>
<tr>
<td>Flashing Orange</td>
<td>Bus has transmit or receive data errors, but is still usable</td>
</tr>
<tr>
<td>Flashing Red</td>
<td>“Bus Off”: Bus is unusable (check CAN cable is connected)</td>
</tr>
</tbody>
</table>

AC Processor Protection Circuit
The AC Distribution Unit contains electronics (TVSS) that protect the AC Processor Board from transient voltages and surges; it does not protect the Line Voltages supplied by the AC breakers. The TVSS is mounted inside the AC Distribution Unit near the AC Processor Board. Two (2) keyed connectors connect the TVSS to the input voltage and to the AC Processor Board. A green indicator LED inside the TVSS is lit when all line voltages are present and the TVSS is operating and protecting the AC Processor Board; the case of the TVSS is clear plastic so that the indicator LED can be seen from any angle. The Indicator LED will turn off if the TVSS is at the end of life (provided that all line voltages are present). A TVSS that is at end of life will not compromise the protection of the AC Unit electronics, but could cut off AC power to the electronics if not replaced before exposure to more transients and surges. It is highly recommended to replace the TVSS as soon as possible when end of life is reached.

Manual Operation
All AC Circuit Breakers can be controlled directly from the AC Power Distribution Unit (bypassing control from the Multi-Function Display(s)). Follow the instructions below to manually control an AC Circuit Breaker:

Step #1:
Remove the cover to the AC Power Distribution Unit by unscrewing the four screws located at each corner of the unit.

Step #2:
Operate the toggle lever for the desired circuit breaker.
Replace the cover when done.

When manually controlling AC circuit breakers, any time you turn one to the “OFF” position, the system will consider this a tripped breaker and activate the audible alarm if configured to do so. The system sees this as a trip because the system did not command the breaker “OFF”.

CAUTION!
Lethal voltages are present inside the AC Unit. Verify that all AC power is shut off or disconnected before working inside the unit. When a circuit breaker is turned off manually, it can still be controlled via the Multi-Function Display (MFD). This could present a hazard when performing maintenance on a circuit. It is good practice to “lock” a breaker in the “OFF” position from the Multi-Function Display (MFD) when performing any required maintenance on a circuit. Refer to page 11 for Locking Function.
Maintenance
The AC Unit was designed to require minimal, if any, maintenance. The only field serviceable parts in the AC Unit are the Circuit Breakers and Solenoids.

Breaker Replacement
The AC circuit breakers are not interchangeable like the breakers in the DC Units. If an AC breaker value/rating needs to be changed, the AC Power Distribution Unit will need to be disassembled. Below are the steps required for replacing an AC breaker:

WARNING!
Lethal voltages are present inside the AC Unit. Verify that all AC power is shut off or disconnected before working inside the unit.

Step #1:
Turn off the main power feeding the AC Power Distribution Unit at the source. Turn all breakers to OFF position. Do not remove the front panel if the LED's are lit (indicating that AC power is being provided to the panel).

Step #2:
Remove front cover by unscrewing the four slotted-head screws located at the corners. Once the screws are removed, the front cover can be lifted straight up and away.

Step #3:
Turn the main AC breaker to the OFF position, if configured.
Remove sub-cover by unscrewing the four slotted-head screws located at the corners. Once the screws are removed, the sub-cover can be lifted straight up and away.

Step #4 (For 8 Position):
Remove the circuit breaker hold down bar by unscrewing the phillips-head screw at the top of the bar. Once the screw is loosened, the hold down bar can be lifted straight up and away.

Step #4 (For 13 & 19 Position):
Remove the circuit breaker hold down bar by unscrewing the phillips-head screw at the bottom of the bar. Once the screw is loosened, lift the bottom of the bar straight up and pull the bar out of the slot at the top.
Breaker Replacement (continued)

Step #5:
Locate and pull up on the red colored solenoid lock.
Remove load terminal connection by unscrewing the load terminal screw.

Step #6:
Slide the solenoid away from the circuit breaker as shown.

Step #7:
Position the Removal Tool and insert hook into circuit breaker slot as shown.

Step #8:
Once the Removal Tool hook is inserted in the circuit breaker slot, snap the other side down to secure the connection to the circuit breaker.

Step #9:
The circuit breaker can now by removed by pulling the Removal Tool straight up and away from the AC enclosure.
Note: The Removal Tool is only used to remove the circuit breaker. You cannot install the breaker with the Removal Tool.

Step #10:
Ensure that the replacement circuit breaker actuator is in the OFF position with solenoid installed and the solenoid tab in the locked position. Position breaker above slot, push straight down until the circuit breaker is in its full seated position.

Make sure main power feeding the AC Power Distribution Unit at the source is OFF.
Breaker Replacement (continued)

Step #11:
Install load wire ring terminal to circuit breaker as shown.

Step #12 (For 8 Position):
Re-Install the circuit breaker hold down bar by placing it as shown and screwing the phillips-head screw at the *top* of the bar.

Step #12 (For 13 & 19 Position):
Re-Install the circuit breaker hold down bar by pushing the top of the bar into the slot of the unit and then pushing the bottom of the bar down. Screw the phillips-head screw at the *bottom* of the bar.

Step #13:
Re-Install the sub-cover by screwing the four slotted-head screws located at the corners. Turn the main AC breaker to the ON position.

Step #14:
Re-Install the front cover by screwing the four slotted-head screws located at the corners. Turn the main power feeding the AC Power Distribution Unit at the source to the ON position.

WARNING!

Required Torque for each AC breaker terminal screw is 35 inch-lbs. This torque requirement must be applied to all circuit breaker terminal screws, no exceptions. Failure to properly torque each connection may result in damage to the AC Unit or vessel.

CAUTION!

All personnel performing installation or maintenance work on the AC Unit will need to have a calibrated torque screwdriver in order to verify proper installation of the circuit breakers and associated connections.
AC Processor Protection Circuit Replacement

Step #1:
Turn off the main power feeding the AC Power Distribution Unit at the source. Turn all breakers to OFF position. Do not remove the front panel if the LED’s are lit (indicating that AC power is being provided to the panel).

Step #2:
Remove front cover by unscrewing the four slotted-head screws located at the corners. Once the screws are removed, the front cover can be lifted straight up and away.

Step #3:
Turn the main AC breaker to the OFF position, if configured. Remove sub-cover by unscrewing the four slotted-head screws located at the corners. Once the screws are removed, the sub-cover can be lifted straight up and away.

Step #4:
Locate the input and output connectors of the TVSS and pull them apart.

Step #5:
Remove the two (2) screws holding the TVSS to the AC Unit case and remove the old TVSS.
AC Processor Protection Circuit Replacement (continued)

Step #6:
Install new TVSS connecting the input and output connectors and reinstall the two (2) screws.

Step #7:
Re-Install the sub-cover by screwing the four slotted-head screws located at the corners.
Turn the main AC breaker to the ON position.

Step #8:
Re-Install the front cover by screwing the four slotted-head screws located at the corners.
Turn the main power feeding the AC Power Distribution Unit at the source to the ON position.

CAUTION!
All personnel performing installation or maintenance work on the AC Unit will need to have a calibrated torque screwdriver in order to verify proper installation of the circuit breakers and associated connections.
General Specifications

Electrical

<table>
<thead>
<tr>
<th>Specification</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating Voltage, Power Input</td>
<td></td>
</tr>
<tr>
<td>(Single Phase)</td>
<td>120VAC; Euro 230VAC</td>
</tr>
<tr>
<td>(Double Phase)</td>
<td>120/240VAC</td>
</tr>
<tr>
<td>(Three Phase)</td>
<td>120/208VAC; 230/415 VAC</td>
</tr>
<tr>
<td>CAN Bus Operating Voltage</td>
<td>9 VDC – 16 VDC, 15 VDC Nominal</td>
</tr>
<tr>
<td>Load Equivalence Number</td>
<td>1</td>
</tr>
</tbody>
</table>

Environmental

<table>
<thead>
<tr>
<th>Specification</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radiated, RF Field Immunity</td>
<td>IEC-61000-4-3</td>
</tr>
<tr>
<td>Electrical Fast</td>
<td>IEC 61000-4-4</td>
</tr>
<tr>
<td>Transient/Burst Immunity</td>
<td></td>
</tr>
<tr>
<td>Voltage Surge Immunity</td>
<td>IEC 61000-4-5</td>
</tr>
<tr>
<td>Conducted, Immunity</td>
<td>IEC 61000-4-6</td>
</tr>
<tr>
<td>Conducted Emissions</td>
<td>IEC 60945</td>
</tr>
<tr>
<td>Voltage Variation Immunity</td>
<td>IEC 61000-4-11</td>
</tr>
<tr>
<td>Conducted LF Immunity</td>
<td>IEC 61000-4-16</td>
</tr>
<tr>
<td>ESD Immunity</td>
<td>IEC-61000-4-2</td>
</tr>
<tr>
<td>Insulation Resistance</td>
<td>IEC-6092-504</td>
</tr>
<tr>
<td>Operating Temperature</td>
<td>-40°C to +55°C</td>
</tr>
<tr>
<td>Storage Temperature</td>
<td>-40°C to +55°C</td>
</tr>
<tr>
<td>Vibration</td>
<td>IEC-60068-2-6 Test Fc</td>
</tr>
<tr>
<td>Temperature Cycle</td>
<td>IEC 60945</td>
</tr>
<tr>
<td>Humidity</td>
<td>IEC-60068-2-30 Test Db</td>
</tr>
<tr>
<td>Corrosion</td>
<td>IEC 60945</td>
</tr>
</tbody>
</table>

Mechanical

<table>
<thead>
<tr>
<th>Specification</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimensions</td>
<td>12.36” X 11.63” X 4.98”</td>
</tr>
<tr>
<td>Dimensions</td>
<td>20.66” X 13.39” X 4.98”</td>
</tr>
<tr>
<td>CAN Bus Connectors</td>
<td>Two (2) Micro-C Male</td>
</tr>
<tr>
<td>CAN A Bus LED Indicator</td>
<td>Green / Red</td>
</tr>
<tr>
<td>CAN B Bus LED Indicator</td>
<td>Green / Red</td>
</tr>
<tr>
<td>MAIN Power In Indicator</td>
<td>Green (3)</td>
</tr>
<tr>
<td>MAIN Power Out Indicator</td>
<td>Green (3)</td>
</tr>
<tr>
<td>8 Position Mounting</td>
<td>4 each</td>
</tr>
<tr>
<td>19 Position Mounting</td>
<td>10 each</td>
</tr>
<tr>
<td>Orientation</td>
<td>Vertical Position (not flat)</td>
</tr>
</tbody>
</table>

Certifications

<table>
<thead>
<tr>
<th>Certification</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>NMEA 2000</td>
<td>Category B</td>
</tr>
<tr>
<td>Lloyd’s Register</td>
<td>Lloyd’s Type Approved, Test Specification #1, Env 2</td>
</tr>
<tr>
<td>CE</td>
<td></td>
</tr>
<tr>
<td>IEC 60533</td>
<td>Electrical and Electronic Installations in Ships</td>
</tr>
<tr>
<td>IEC 60945</td>
<td>Maritime Navigation and Radio Communication Equipment and Systems</td>
</tr>
</tbody>
</table>
Dimensional Specifications: in. [mm]

8 Circuit AC Power Distribution Unit
A3000-08-[]

Mounting Dimensions shown in Blue represented underneath cover.
Dimensional Specifications: in. [mm]

13 Circuit AC Power Distribution Unit
A3000-13-[]
Dimensional Specifications: in. [mm]

19 Circuit AC Power Distribution Unit
A3000-19-[]

- 13.39 [340.00]
- 12.50 [317.60]
- 4.98 [126.50]
- 0.51 [13.00]
- 3.71 [94.20]
- 9.97 [253.10]
- 0.90 [22.90]
- 0.27 [6.70]
- 1.28 [32.40]
- 2.11 [53.50]
- 3.53 [89.60]
- 6.37 [161.90]
- 10.13 [257.30]
- 11.63 [295.30]
- 18.72 [475.50]
- 4.98 [126.50]
- 10.42 [264.60]
- 20.66 [524.80]
- 0.44 [11.20]
- 1.19 [30.20]
- 1.29 [32.80]
DC POWER DISTRIBUTION UNIT
A3650: 8 POSITION / A3655: 16 POSITION

The eight and sixteen DC Power Distribution units are multiprocessor based design rated for up to 100 Amps max. The Electronic Circuit Breakers (ECBs) can be configured to provide protection for DC loads up to 30 Amps.

These units contain two host processors for communicating with ECBs and also CAN networks.

Product Highlights (8 Position Unit):
• Eight ECB’s rated at up to 30 Amps
• Dual CAN BUS Communication

Product Highlights (16 Position Unit):
• Eight ECB’s rated at up to 30 Amps
• Eight ECB’s rated at up to 15 Amps
• Dual CAN BUS Communication

Configuration
Configuration of an OctoPlex® DC Unit and its associated ECBs can be performed via G2 Analyzer configuration software. G2 Analyzer provides access to all configurable aspects of a DC Unit and its ECBs.

*Manufacturer reserves the right to change product specification without prior notice. Please refer to our website for the latest details.
DC Power Distribution Unit (A3650 & A3655) - Configuration

Default (Power Up) Behavior:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Setting</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default State</td>
<td>ON or OFF</td>
<td>ECB state on device up</td>
</tr>
<tr>
<td>Default Lock State</td>
<td>ON or OFF</td>
<td>Lock state on device power up</td>
</tr>
<tr>
<td>Current Setting</td>
<td>0 - 15/30A</td>
<td>ECB selected load rating</td>
</tr>
<tr>
<td>Default Dim %</td>
<td>0 - 100%</td>
<td>% of DIM on power up</td>
</tr>
<tr>
<td>Time Delay</td>
<td>0 - 750ms</td>
<td>Trip delay</td>
</tr>
<tr>
<td>Inrush Delay</td>
<td>0 - 1500ms</td>
<td>Inrush delay</td>
</tr>
<tr>
<td>Factory Current Rating</td>
<td>0 - 15/30A</td>
<td>Max allowed ECB setting</td>
</tr>
<tr>
<td>Dimming Allowed</td>
<td>YES or NO</td>
<td>Enable / Disable</td>
</tr>
<tr>
<td>Configuration Allowed</td>
<td>YES or NO</td>
<td>Configuration via Multi-Function Display</td>
</tr>
</tbody>
</table>

The Factory Current Rating is the maximum allowed ECB trip setting as determined by the boat builder and/or installation (example: load requirements / wire gauge)

CAUTION!

Inrush & Trip Delays

Inrush Delays are commonly used for devices with high inrush loads during startup such as pumps. The configured setting (in milliseconds) is the time period that the load current is allowed to exceed the programmed current limit. Inrush Delay is typically used with loads that are powered ON/OFF via the ECB.

Trip Delay is associated with loads that are powered ON/OFF via a mechanical switch inline after the ECB (ECB is always ON and supplies power to the switch). The configured setting (in milliseconds) is the time period that the load current is allowed to exceed the programmed current limit.

Automatic ECB Control by Flash Function

The Flash Function allows control of an ECB to be periodic. Common uses of this function include controlling a Fog Horn, automatically turning off a Head Fan or light after a set period of time, etc. Three parameters dictate the behavior of the circuit and are set via the G2 Analyzer utility. A maximum of 15 flash table entries may be defined.

<table>
<thead>
<tr>
<th>Flash On Time</th>
<th>Flash Off Time</th>
<th>Number of Cycles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duration of time the circuit is ON</td>
<td>Duration of time the circuit is OFF</td>
<td>Number of times to repeat the cycle 0 - 255, 0 = forever</td>
</tr>
</tbody>
</table>
Automatic ECB Control by Discrete I/O Function

When a System Interface Unit Monitor (SIU) is part of the installation, input signals to the SIU, it can be configured to control the behavior of the ECB’s. 16 Discrete I/O’s per DC Unit (both 8 and 16 positions) can be programmed. One Discrete I/O can control multiple ECB’s up to the unit limit. The Discrete I/O state is maintained independent of any ECB state. Therefore, if an ECB is being controlled from multiple input signals (DIO’s) an “out of state” situation is possible when input signals are switched. Example: two wall switches are controlling the same light (ECB) depending on the state of the signal a second touch of the switch may be required to obtain the desired action.

<table>
<thead>
<tr>
<th>Discrete I/O</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Always Turn On</td>
<td>Turn ECB on</td>
</tr>
<tr>
<td>Always Turn Off</td>
<td>Turn ECB off</td>
</tr>
<tr>
<td>Toggle ON/OFF</td>
<td>Toggle ECB state</td>
</tr>
<tr>
<td>Brighten</td>
<td>Increase light intensity (voltage increases in 5% increments per button actuation)</td>
</tr>
<tr>
<td>DIM</td>
<td>Decrease light intensity (voltage decreases in 5% increments per button actuation)</td>
</tr>
<tr>
<td>Flash</td>
<td>Refers button actuation to specific flash table assigned to that button</td>
</tr>
<tr>
<td>Unlock</td>
<td>Unlocks ECB (state does not change)</td>
</tr>
<tr>
<td>One Button Smooth High-to-Low</td>
<td>Single press changes ECB state. Press and hold wall switch to turn ON; hold for High to Low voltage decrease (5% increments). Continuing to hold will reset to 100% intensity and repeat.</td>
</tr>
<tr>
<td>One Button Smooth Low-to-High</td>
<td>Single press changes ECB state. Press and hold wall switch to turn ON; hold for Low to High voltage increase (5% increments). Continuing to hold will reset to 5% intensity and repeat.</td>
</tr>
<tr>
<td>Smooth Scroll</td>
<td>Momentary touch turns ECB ON only; continuing to hold scrolls UP and DOWN (last known state is retained).</td>
</tr>
<tr>
<td>One Button Smooth Scroll</td>
<td>Momentary touch changes ECB state; continuing to hold scrolls UP and DOWN (last known state is retained).</td>
</tr>
<tr>
<td>Discrete Momentary</td>
<td>Turn ECB ON as long as signal is present (Momentary ON/OFF Button only)</td>
</tr>
</tbody>
</table>

A DC Electronic Circuit Breaker (ECB – 16) provides power to an incandescent lamp. The lamp is controlled via a momentary wall switch tied to an SIU input. The system is configured to allow this particular SIU input to send a message to the ECB for on/off and dim.

1. The wall switch is pressed for On/Off or pressed and held for On/Dim.
2. The SIU input receives a ground signal when the wall switch is depressed.
3. The SIU converts the analog ground signal to an NMEA 2000 PGN message which is broadcast over the network.
4. A DC Unit configured to listen for the SIU Output Pin message receives the PGN and triggers a configured internal Discrete I/O (DIO) function to control the ECB/Circuit.
5. Multi-Function Display receives the ECB status change and updates the breaker button accordingly.
6. Pulse Width Modulation (Dimming Function) can also be used to control fan speeds and multi speed devices.

LED Configuration & Control

LED lighting control (On/Off/Dimming) is supported by both the OctoPlex Multi-Function Display and/or analog switches when properly wired and interfaced to a configured OctoPlex SIU.

The ECB being used as a dimming module will provide an active high output at full battery voltage to the LED control module. Verify that the LED control module can accept this type of input prior to use. When an ECB is configured to provide a PWM output (dimming) the PWM frequency is 100Hz.
Installation
The DC Power Distribution Unit is designed to be installed in an environmentally protected, non-explosive area of the vessel. Take precautions to mount the unit in an area that will be away from direct exposure to water, weather and combustible fumes.

Mounting
These units should be mounted in a location that is accessible for manual/override control and serviceability.

Power Input Connections
Input studs are provided for DC positive feed and negative return wires. A DC negative bus bar is provided for negative branch circuit wires. The negative bus bar is connected to the DC negative return stud.

When tightening power lug use wrench to secure backing nut and torque main nut to 105 in/lbs.

CAUTION!
Turn off DC Power prior to working with main DC power input stud. Verify that main DC power to the Unit is off.

WARNING!
All power input connections should be tightened securely to ensure a good connection. All power feeds should be protected by an appropriately sized fuse or circuit breaker located at the power source.

Power Output Connections
The mating connectors required to interface the loads to the DC Unit are: Deutsch HDP26-18-8PN. Two connectors are required for 16 position panels. One connector is required for 8 position Unit. Connectors can accommodate 10 to 16 AWG wire depending on the terminal selected.

<table>
<thead>
<tr>
<th>Wire Gauge</th>
<th>Contact Type</th>
<th>Deutsch Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>14 to 18</td>
<td>Stamped/Formed</td>
<td>1060-16-0122</td>
</tr>
<tr>
<td>12 to 14</td>
<td>Solid</td>
<td>0460-204-12141</td>
</tr>
<tr>
<td>12 to 14</td>
<td>Stamped/Formed</td>
<td>1060-12-0166</td>
</tr>
<tr>
<td>10</td>
<td>Stamped/Formed</td>
<td>1060-12-0222</td>
</tr>
</tbody>
</table>

The recommended crimp tool for the solid contact is HDT-48-00. Refer to www.laddinc.com/product/?sku=HDT-48-00 for proper use and instructions on using this tool. The recommended crimp tool for the stamped contacts is, Deutsch DTT-12-00. Refer to www.laddinc.com/product/?sku=DTT-12-00 for proper use and instruction on using this tool.

Depending on the contact type selected, any gauge wire from 10 to 16 can be used to connect the loads to the DC Unit. Verify that the wire gauge, as well as, the ECB setting selected is appropriate for the load including a safety factor.
DC Power Distribution Unit (A3650 & A3655) - Installation, Operation

Power Connector Pin Out

<table>
<thead>
<tr>
<th>Deutsch HDP26-18-8PN</th>
<th>8-Position Panel</th>
<th>16-Position Panel</th>
</tr>
</thead>
<tbody>
<tr>
<td>J1-G Breaker 1</td>
<td>J2-F Breaker 9</td>
<td></td>
</tr>
<tr>
<td>J1-F Breaker 2</td>
<td>J2-A Breaker 10</td>
<td></td>
</tr>
<tr>
<td>J1-A Breaker 3</td>
<td>J2-E Breaker 11</td>
<td></td>
</tr>
<tr>
<td>J1-E Breaker 4</td>
<td>J2-D Breaker 12</td>
<td></td>
</tr>
<tr>
<td>J1-D Breaker 5</td>
<td>J2-C Breaker 13</td>
<td></td>
</tr>
<tr>
<td>J1-C Breaker 6</td>
<td>J2-B Breaker 14</td>
<td></td>
</tr>
<tr>
<td>J1-B Breaker 7</td>
<td>J2-H Breaker 15</td>
<td></td>
</tr>
<tr>
<td>J1-H Breaker 8</td>
<td>J2-G Breaker 16</td>
<td></td>
</tr>
</tbody>
</table>

* Please note the difference between J1 & J2 connections

WARNING!

Back feeding power into the DC Unit through the power output connectors can occur if external power is applied to an output load pin. This condition will be flagged as an ECB Abnormal High error and must be corrected. In this situation power will be live in the Unit even if the main breaker inside the unit is turned OFF. Once the cause for the back feed is resolved, the DC Unit will need to be reset to allow the affected ECB to come back on line.

CAN Connections

Two male Micro-C connectors are provided on the front of the DC Power Distribution Unit for connection to the primary and secondary CAN bus via drop cables.

NOTE

Use the shortest drop length possible when connecting the DC Unit to the CAN backbone. NMEA 2000 spec is maximum 6 meters for drop cables.

Operation

There are three LED’s visible through the cover of the DC Power Distribution Unit. The left and right LED’s indicate that DC power is available on the primary and secondary CAN network. The middle LED indicates that the unit is receiving main external DC power. If the DC Power Distribution unit is not receiving power, the Touch Screen Display(s) will not be able to control the ECB’s.

ECB Operation

Each ECB inside of the DC Power Distribution unit has two LED’s, one red and one green. The status of each ECB can be determined by which LED is illuminated or blinking as indicated below:

<table>
<thead>
<tr>
<th>LED Indications</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steady Green</td>
<td>ECB is On with a load</td>
</tr>
<tr>
<td>Blinking Green</td>
<td>ECB is On with no load</td>
</tr>
<tr>
<td>Steady Red</td>
<td>ECB is tripped</td>
</tr>
<tr>
<td>Blinking Red</td>
<td>ECB detected error</td>
</tr>
<tr>
<td>Steady Red, Steady Green</td>
<td>ECB error Refer to ECB Status Below</td>
</tr>
<tr>
<td>No Lights</td>
<td>ECB is Off</td>
</tr>
</tbody>
</table>

Any other indication represents a faulty condition, requiring the ECB to be replaced.
ECB Status

ECB Status can be viewed on the Multi-Function Display via Breaker Status Hot Button. The following table provides a list of status messages reported by each ECB.

<table>
<thead>
<tr>
<th>Status</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tripped</td>
<td>The ECB has tripped from an circuit overload</td>
</tr>
<tr>
<td>Open Load</td>
<td>The ECB is on but the circuit is not drawing current</td>
</tr>
<tr>
<td>Short Load</td>
<td>The ECB tripped based on a detected short circuit</td>
</tr>
<tr>
<td>Fuse Blown</td>
<td>The ECB slot fuse has opened</td>
</tr>
<tr>
<td>Fuse Failed</td>
<td>Fuse failed to open</td>
</tr>
<tr>
<td>Access Error</td>
<td>Internal ECB address error</td>
</tr>
<tr>
<td>Communication Error</td>
<td>ECB has lost communication with the DC processor</td>
</tr>
<tr>
<td>Abnormal High</td>
<td>ECB is OFF but voltage is present at the output</td>
</tr>
<tr>
<td>Abnormal Low</td>
<td>Reserved for future use</td>
</tr>
<tr>
<td>Disable</td>
<td>Internal ECB A/D Error</td>
</tr>
<tr>
<td>ECB Model</td>
<td>Current ECB hardware configuration</td>
</tr>
<tr>
<td>ECB Version</td>
<td>Current ECB software version</td>
</tr>
</tbody>
</table>

Detected errors require that the power to the DC Unit be cycled in order to clear the error. This can be done via the main breaker inside the DC Unit or by cycling the DC power feeding the DC Unit. A shorted load indication may result from an abnormal low voltage being fed to the DC Unit power input. Each ECB is protected by a fuse, either 15 or 30 amps, depending on the position of the ECB. 1-8 are 30A and 9-16 are 15A. See Fuse Replacement section for details. Abnormal High (back feed) occurs when the ECB is in the OFF state but detects voltage on its output. Common causes are a failed external blocking diode (bilge pump etc) or wiring issue.

ECB Error

In the event that a breaker indicator shows an “error” or a “tripped” condition, a more detailed description of this breaker status may be viewed as follows:

• Press the Breaker Status button in the lower right corner of the page (1). This will show a sub-page called “Switch/Breaker Status” (see screenshot).

• Press the breaker object in question (2) followed by the Get Status button (3). This will show a dialog box with a more detailed description of the breaker status, in addition to all of the available configuration parameters.

Standard DC Power Distribution Unit Screen Layouts

The DC Power Distribution Unit screen shows the DC Breaker Label and the current state of the DC Breakers. State of the breaker options include: ON, OFF, Trip, Group Control (ON or OFF), or Locked Status (Locked ON or Locked OFF). The user can also scroll forward or backwards to select a specific DC Distribution Power Unit (Example DC Panel #1).
Manual Operation / Overrides

All ECB’s can be controlled directly from the DC Power Distribution Unit (overriding/bypassing network control from the Multi-Function Display(s)). If it’s installed upright (all connectors on the bottom), the main breaker is in the lower left corner of the Unit. Follow the instructions below for using the DC Power Distribution Unit in override mode:

Note

Switch / Breaker buttons will appear as Active, with the words “Local Override”.

Step #1:

Remove cover to DC Power Distribution Unit.

Step #2:

Place the toggle switch located on the board along the left side of the panel to the up position. A Red LED will light up indicating that the panel is in local or “override” mode.

Step #3:

Individual toggles (either 8 or 16) are located in between the two rows of ECB’s. They are in sequential order with 1 being on the left and 8 or 16 being on the right. Toggles should be in the up position to turn an ECB on and down to turn an ECB off.

Step #4:

To return the DC Power Distribution Unit to its normal mode so that ECB’s can be controlled via the Multi-Function Display(s), place the toggle located on the board along the right side of the panel in the down position. The red LED will go out and a green LED will light indicating the DC Unit is now in remote mode and can be controlled by the Multi-Function Display.

Maintenance

The DC Unit was designed to require minimal maintenance. The only field serviceable parts in the DC Unit are the ECBs and the fuses. It is recommended that all connections are checked on a regular basis.
ECB Replacement

With the cover removed, the inside of the DC Power Distribution Unit can be accessed. If it’s installed upright (all connectors on the bottom), the main breaker is in the lower left corner of the unit. This traditional breaker (100A) will disconnect all power to the unit. To remove or replace an ECB follow the below instructions:

WARNING!

The power input stud will still have DC power.

Step #1:
Remove cover to DC Power Distribution Unit.

Step #2:
Turn off the Main Breaker (lower left corner of the unit) to the DC Power Distribution Unit.

WARNING!
Verify that the middle LED (power present) is OFF before proceeding or damage to the unit may occur.

Step #3:
Pull the tab away from the base of the ECB while pulling the ECB away from the board it is mounted to. The tabs securing the ECB’s are at the base of each ECB towards the outside of the unit. (On the top row of ECB’s the tab is on top, on the bottom row of ECB’s the tab is on the bottom.)

Step #4:
Install an ECB into the DC Power Distribution Unit by simply pushing the ECB into the board by lining up the pins with the connector on the ECB. A soft “click” will be heard when the ECB is properly “locked” into position.

Step #5:
Turn the main breaker to the unit back to the on position.
Re-install cover.
Fuse Replacement

With the cover removed, the inside of the DC Power Distribution Unit can be accessed. If it’s installed upright (all connectors on the bottom), the main breaker is in the lower left corner of the unit. This traditional breaker (100A) will disconnect all power to the unit. Follow instructions below for Backup Fuse Replacement.

WARNING!

The power input stud will still have DC power.

Step #1:
Turn off the Main Breaker (lower left corner of the unit) to the DC Power Distribution Unit.

Verify that the middle LED (power present) is OFF before proceeding or damage to the unit may occur.

Step #2:
Loosen the thumbscrews on the small board between the two rows of ECB’s which contain the manual override toggle switches. (It may be easier to access the screws if ECB’s are removed from the unit. Follow “ECB Replacement” steps on page 25 for ECB Removal.)

Step #3:
When all of the screws are loosened, lift and pull the board away from the vertically mounted board located on the right-hand side of the unit. The board with the switches should come loose and allow access to the backup fuses.

Step #4:
In 16-position units, the left 8 ECB positions (#1-8) are protected by a 30A fuse, while the remaining 8 (#9-16) are protected by a 15A fuse. In 8-position units, all ECB’s are protected by 30A fuses. Fuses can simply be pulled out and replaced with the same type (ATO automotive fuses) and value.

Step #5:
After proper fuses are installed, replace the board with the toggles by lining up the pins on the board along the side of the unit with the connector on the vertically mounted board on the right side of the unit. After the pins are lined up and the board is inserted properly the thumbscrews can be re-tightened and the ECB’s can be replaced. Replace any ECB’s, which were removed in the process.
Fuse Replacement (continued)

Step #6:
Turn the main breaker to the unit back to the ON position. The red and green LED’s should no longer be lit at the same time for the ECB position with the replaced fuse.

CAUTION!
If the red and green LED’s continue to illuminate after replacing the backup fuse using the above procedure, the ECB is faulty and should be replaced.

General Specifications

Electrical
- Power Input (DC Voltage): 10 VDC – 32VDC
- Power Input (Max Current): 100 Amps
- CAN Bus Output Voltage: 9 VDC – 16 VDC, 15 VDC Nominal
- Load Equivalence Number (LEN): 1

Mechanical
- Dimensions: 10.81" x 12.62" x 4.93"
- CAN Bus Connectors: Two (2) Micro-C Male
- CAN A Bus LED Indicator: Green
- CAN B Bus LED Indicator: Green
- MAIN Power Indicator: Green
- Input Power Connection: 5/16-18” Stud
- Main Power Return Connection: 5/16-18” Thread
- Load Power Return Bus Bar (Removable): 8 each 10-32 screws
- Mounting: 4 each 4x0.31 for 1/4” mounting hardware
- Orientation: N/A

Certifications
- NMEA 2000: Category B
- Lloyd’s Register: Lloyd’s Type Approved, Test Specification #1, Env 2
- CE: IEC 60533 Electrical and Electronic Installations in Ships
- IEC 60945 Maritime Navigation and Radio Communication Equipment and Systems

Environmental
- Radiated, RF Field Immunity: IEC-61000-4-3
- Electrical Fast Transient/Burst Immunity: IEC-61000-4-4
- Voltage Surge Immunity: IEC 61000-4-5
- Conducted, Immunity: IEC 61000-4-6
- Conducted Emissions: IEC 60945
- Voltage Variation Immunity: IEC 61000-4-11
- Conduction LF Immunity: IEC 61000-4-16
- ESD Immunity: IEC-61000-4-2
- Insulation Resistance: IEC-60092-504
- Operating Temperature: -40°C to +55°C
- Storage Temperature: -40°C to +55°C
- Vibration: IEC-60068-2-6 Test Fc
- Temperature Cycle: IEC 60068-2-30 Test Db
- Humidity: IEC 60068-2-30 Test Db
- Corrosion: IEC 60945
- Weight with breakers: A3650: 5.5 lbs. (2.49 kg), A3655: 8.25 lbs. (3.74 kg)
Dimensional Specifications: in. [mm]

8 Circuit DC Power Distribution Unit

A3650

- **Main Power Return**
 - 5/16-18 Thread

- **Load Power Return**
 - Bus Bar (Removable)

- **Status Indicators**
- **Main DC Power Input**
 - 5/16-18 Stud

- **CAN BUS A** (micro-c male)
- **CAN BUS B** (micro-c male)

- **CAN BUS B** (micro-c male)
- **8 Loads**
 - Up to 30A Max

- **4x Ø.31 for 1/4 MTG. Hardware**

Dimensions:
- 0.38 [9.65]
- 9.50 [241.30]
- 8.75 [222.25]
- 7.75 [196.85]
- 4.93 [241.30]
- 4.40 [241.30]
- 9.44 [239.77]
- 7.50 [190.50]
- 11.00 [279.4]
Dimensional Specifications: in. [mm]

16 Circuit DC Power Distribution Unit

A3655

- **Main DC Power Input**: 5/16-18 Stud
- 8 Loads Up to 30A Max Each
- 8 Loads Up to 15A Max Each
- Status Indicators
- 8x #10-32 Screws
- Load Power Return Bus Bar (Removable)
- Main Power Return 5/16-18 Thread
- CAN BUS A (micro-c male)
- CAN BUS B (micro-c male)
- 4x Ø.31 for 1/4 MTG. Hardware
- 10.90 [276.86]
- 11.00 [279.4]
- 11.88 [301.75]
- 12.63 [320.80]
- 4.93 [241.30]
- 4.40 [241.30]

sales@carlingtech.com | www.carlingtech.com
The Network Power Supply (NPS) provides regulated +15 VDC to the OctoPlex dual CAN network system. The power supply utilizes one AC and two DC power inputs for redundancy.

Product Highlights:
- 120 VAC Input Power (Carling P/N A3205-1)
- 230VAC Input Power (Carling P/N A3205-2)
- +24V DC Input Power
- Dual CAN Bus Connection/Communications
- 7.5 amp Thermal breakers for each 15 volt output
- Network Health LED Status Indicators

Table 1:

<table>
<thead>
<tr>
<th>LED Indicator</th>
<th>Color</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAN Bus A</td>
<td>Green</td>
<td>CAN Bus On</td>
</tr>
<tr>
<td></td>
<td>No Indication</td>
<td>CAN Bus Off</td>
</tr>
<tr>
<td>Service</td>
<td>Red</td>
<td>Needs Service</td>
</tr>
<tr>
<td></td>
<td>No Indication</td>
<td>Normal Operation</td>
</tr>
<tr>
<td>CAN Bus B</td>
<td>Green</td>
<td>CAN Bus On</td>
</tr>
<tr>
<td></td>
<td>No Indication</td>
<td>CAN Bus Off</td>
</tr>
</tbody>
</table>

Installation

The Network Power Supply should be installed in a location that allows access to the thermal circuit breakers installed on the connector side of the unit. At least one (1) power input (AC or DC) must be present for the NPS to operate. Depending on network complexity, one (1) or more Network Power Supplies can be installed. See Diagrams for Typical Single or Multiple NPS installations.

CAUTION!

This is the only OctoPlex® component, which uses Mini/Thick cable and Mini-C connectors (other components use Micro-C connectors). The drops used for this component should have a Male Mini-C connection on both ends.

Manufacturer reserves the right to change product specification without prior notice. Please refer to our website for the latest details.
The required number of Network Power Supplies will be determined by the length of the backbone and the sum of the devices powered on the network. If multiple power sources are required, V+ (NET-S) must be broken (on both Buses) between the sources. The SHIELD (drain) must be connected at only ONE power supply.
Pin Out Connections

<table>
<thead>
<tr>
<th>Connector</th>
<th>Pin</th>
<th>Connection</th>
<th>View</th>
<th>Mating Connector</th>
</tr>
</thead>
<tbody>
<tr>
<td>J1 / J2</td>
<td>1</td>
<td>Shield</td>
<td></td>
<td>Device Net Mini-C Male</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Power Output</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>Power Return</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>CAN HI</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>CAN LOW</td>
<td></td>
<td></td>
</tr>
<tr>
<td>J3</td>
<td>1</td>
<td>AC Neutral</td>
<td></td>
<td>DT06-4S</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>AC Ground</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>AC Ground</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>AC Line</td>
<td></td>
<td></td>
</tr>
<tr>
<td>J4 / J5</td>
<td>1</td>
<td>DC Power Input</td>
<td></td>
<td>DT06-2S</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>DC Power Return</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Two female Mini-C connectors are provided for connection to the primary and secondary CAN Bus via drop cables.

Operation

Standard Network Power Supply Screen Layout

The NPS screen shows Status of the input power, Source of power (AC, DC1 DC2), CAN A and CAN B status, CAN A and CAN B Voltage and Current readings, and the internal box temperature.

![Network Power Screen](image)

Maintenance

The Network Power Supply requires no maintenance. Any service or repair issues should be handled by a factory authorized technician.
General Specifications

Electrical

- AC Voltage Input: A3205-1: 90-126VAC; 56Hz - 63Hz
- AC Input Current (Max): 2 Amps
- DC Voltage Input: 18VDC - 36VDC
- DC Input Current (Max): 6 Amps
- CAN Bus Output Voltage: +15 VDC (± 0.5)

Environmental

- Radiated, RF Field Immunity: IEC-61000-4-3
- Electrical Fast Transient/Burst Immunity: IEC 61000-4-4
- Voltage Surge Immunity: IEC 61000-4-5
- Conducted, Immunity: IEC 61000-4-6
- Conducted Emissions: IEC 60945
- Voltage Variation Immunity: IEC 61000-4-11
- Conducted LF Immunity: IEC 61000-4-16
- ESD Immunity: IEC-61000-4-2
- Insulation Resistance: IEC-60092-504

Mechanical

- Dimensions: 7.80” X 8.84” X 3.85”
- CAN Bus Connectors: Two (2) Mini Female
- AC Power Input Connector: Deutsch P/N DT06-4S
- DC Power Input Connector: Two (2) Deutsch P/N DT06-2S
- Mounting: 4 each 4 x 0.16 #6 hardware
- Orientation: N/A

Certifications

- NMEA 2000 Category B
- Lloyd’s Register Lloyd’s Type Approved, Test Specification #1, Env 2
- IEC 60533 Electrical and Electronic Installations in Ships
- IEC 60945 Maritime Navigation and Radio Communication Equipment and Systems

Weight

- 6.0 lbs (2.72 kg) Max

Dimensional Specifications: in. [mm]

Network Power Supply

A3205-[]

- Power Label: 8.84 [224.53]
- Identification Plate: 8.00 [203.20]
- 0.16 Wide Slot for #6 Screw
- 7 1/2 A Circuit Breaker

Battery Monitor (A3680) - Overview, Installation

The Battery Monitor is capable of measuring one (1) Current, two (2) DC Voltages, and up to four (4) individual battery temperatures. The Battery Monitor Cable Harness (P/N A2225-[]), see Table 1 and 2) enables the monitor to connect to the batteries. The Battery Shunt 200 Amp, 50mV (P/N MS91587-2), is needed to measure the current that is installed on the high side of the installation. The Battery Monitor is NMEA 2000® certified, allowing the user to view all DC information over an NMEA 2000 network.

BATTERY MONITOR
A3680

Product Highlights:
- Capable of Monitoring the following:
 - Current Measurement
 - Two (2) DC Voltage Measurements
 - Four (4) Temperature Measurements
- Configurable Alerts/Alarms
- Single CAN BUS Communication

Installation
The Battery Monitor was designed to be installed in a protected, non-explosive area of the vessel. Take precautions to install the Battery Monitor in an area that will be away from direct exposure to the weather and combustible fumes.

CAN Connections
One male Micro-C connectors is provided on the top of the Battery Monitor for connection to the primary CAN bus via drop cable.

NOTE
Use the shortest drop length possible when connecting the Battery Monitor to the CAN backbone. NMEA 2000 spec is maximum 6 meters for drop cables.

Manufacturer reserves the right to change product specification without prior notice. Please refer to our website for the latest details.
Battery Monitor (A3680) - Installation

Typical Installation Diagram

Mount Temperature Sensors (Part of A2225-{]) to Battery stud or adhere directly to battery

CAUTION!

When no High Side Shunt is used, tie the orange, green and blue wires directly to the V1+ side of the battery.
Installer must follow applicable industry standards i.e. ABYC/CE for properly wiring and utilizing external protective devices i.e. fuses as required.

Battery Monitor Harness Cable

Table 1:

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A2225-4</td>
<td>Battery Monitor Cable Harness - 4'</td>
</tr>
<tr>
<td>A2225-6</td>
<td>Battery Monitor Cable Harness - 6'</td>
</tr>
<tr>
<td>A2225-8</td>
<td>Battery Monitor Cable Harness - 8'</td>
</tr>
<tr>
<td>A2225-14</td>
<td>Battery Monitor Cable Harness - 14'</td>
</tr>
<tr>
<td>A2225-16</td>
<td>Battery Monitor Cable Harness - 16'</td>
</tr>
<tr>
<td>MS91587-2</td>
<td>Battery Shunt 200Amp, 50mV</td>
</tr>
</tbody>
</table>

Table 2:

<table>
<thead>
<tr>
<th>Pin</th>
<th>Connection</th>
<th>Color</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Temperature Sensor 1 Signal</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Shunt High</td>
<td>Orange</td>
</tr>
<tr>
<td>3</td>
<td>Temperature Sensor 2 Signal</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Temperature Sensor 1 Ground</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Ground</td>
<td>Black</td>
</tr>
<tr>
<td>6</td>
<td>Shunt Low</td>
<td>Green</td>
</tr>
<tr>
<td>7</td>
<td>Temperature Sensor 3 Signal</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Temperature Sensor 3 Ground</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Temperature Sensor 2 Ground</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Reserved</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Battery V2+ 12-30VDC</td>
<td>Red</td>
</tr>
<tr>
<td>12</td>
<td>Temperature Sensor 4 Signal</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Temperature Sensor 4 Ground</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Reserved</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Not Used</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Not Used</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Not Unused</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Battery V1+ 12-30VDC (Must be connected to power monitor)</td>
<td>Blue</td>
</tr>
</tbody>
</table>
Operation
The Battery Monitor has one (1) configurable parameter; the maximum current value of the high side shunt being used. This parameter is a factory setting. The voltage drop across the high side shunt should not exceed 50 mV for the configured current. For example, if the maximum shunt value selected is 200 amps, then the voltage drop across the high side shunt at 200 Amps should not exceed 50 mV DC.

Standard Battery Monitor Screen Layout
The Battery Monitor screen shows the status (voltage, current, temperature & state of charge) of the battery banks being monitored. Specific configuration and installation of the battery monitor is defined by the boat builder.

Maintenance
The Battery Monitor requires no maintenance. Any service or repair issues should be handled by a factory authorized technician.

General Specifications

<table>
<thead>
<tr>
<th>Electrical</th>
<th>Environmental</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power Input</td>
<td>Radiated, RF Field Immunity</td>
</tr>
<tr>
<td>DC Voltage Input</td>
<td>Electrical Fast</td>
</tr>
<tr>
<td>Shunt Voltage</td>
<td>Transient/Burst Immunity</td>
</tr>
<tr>
<td>CAN Bus Voltage</td>
<td>Voltage Surge Immunity</td>
</tr>
<tr>
<td>Load Equivalence Number</td>
<td>Conducted, Immunity</td>
</tr>
<tr>
<td>(LEN)</td>
<td>Conducted Emissions</td>
</tr>
<tr>
<td>Dimensions</td>
<td>Voltage Variation Immunity</td>
</tr>
<tr>
<td>CAN Bus Connectors</td>
<td>Conduction LF Immunity</td>
</tr>
<tr>
<td>Mounting</td>
<td>ESD Immunity</td>
</tr>
<tr>
<td>Orientation</td>
<td>Insulation Resistance</td>
</tr>
<tr>
<td>Certifications</td>
<td>Operating Temperature</td>
</tr>
<tr>
<td>NMEA 2000</td>
<td>Storage Temperature</td>
</tr>
<tr>
<td>Lloyd’s Register</td>
<td>Temperature Sensor Range</td>
</tr>
<tr>
<td>CE</td>
<td>Vibration</td>
</tr>
<tr>
<td>IEC 60533 Electrical and Electronic Installations in Ships</td>
<td>Temperature Cycle</td>
</tr>
<tr>
<td>IEC 60945 Maritime Navigation and Radio Communication Equipment and Systems</td>
<td>Humidity</td>
</tr>
<tr>
<td>Corrosion</td>
<td>Weight</td>
</tr>
</tbody>
</table>
Battery Monitor (A3680) - Dimensional Specifications

Dimensional Specifications: in [mm]

Battery Monitor

A3680

![Battery Monitor Diagram]

- 3.25 [82.55]
- 2.25 [57.15]
- 5.50 [139.70]
- 5.00 [127.00]
- 4.35 [110.49]

0.16 Wide Slot for #6 Screw

Shunt

Source: www.deltecco.com/MKB-DC.html

![Shunt Diagram]

- 3.25 [82.55]
- 0.625 [15.87]
- 1.75 [44.45]
- 0.438 [11.125]
- 0.662 [16.74]
- 0.205 [5.207]

sales@carlingtech.com | www.carlingtech.com 51
AC MONITOR
A3770

The AC Monitor measures the voltage, current and frequency of up to four (4) Single phase single Line AC inputs, two (2) Single Phase Dual Line AC inputs, or one (1) Three phase Three Line AC input. The AC Monitor utilizes dual CAN connections for redundancy.

Installation
Depending on the type and number of AC power sources being monitored, the AC Power Monitor requires from one (1) to four (4) Deutsch DT06-4S connectors (Table 1). It is also recommended that 16 AWG wire is used for the connections to the AC sources (Table 2).

<table>
<thead>
<tr>
<th>Deutsch DT06-4S Connector Pins</th>
<th>Wire Gauge</th>
<th>Contact Type</th>
<th>Deutsch Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. AC Line</td>
<td>16 to 20</td>
<td>Solid</td>
<td>0462-201-16141</td>
</tr>
<tr>
<td>2. AC Neutral</td>
<td>14 to 18</td>
<td>Stamped/formed</td>
<td>1062-16-0122</td>
</tr>
<tr>
<td>3. AC Current Transformer Input #1</td>
<td>14 to 18</td>
<td>Stamped/formed</td>
<td>1062-16-0144</td>
</tr>
<tr>
<td>4. AC Current Transformer Input #2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Manufacturer reserves the right to change product specification without prior notice. Please refer to our website for the latest details.
AC Power Monitor Installation #1
Single 120 VAC/230 VAC (Euro)

AC Power Monitor Installation #2
Dual 120/240VAC
AC Power Monitor Installation #3
Three Phase VAC (120/208VAC or 230/415VAC)

CAN Connections
Two male Micro-C connectors are provided the right side of the AC Monitor for connection to the primary and secondary CAN bus via drop cables.

NOTE
Use the shortest drop length possible when connecting the AC Monitor to the CAN backbone. NMEA 2000 spec is maximum 6 meters for drop cables.

Operation
There are three (3) LED’s that are visible through the cover of the AC Power Monitor. The left and right LED’s indicate that there is a primary and secondary network connection. The center LED displays the AC Input Power Status (i.e. whether the AC Power monitor is receiving power from the input connectors). The Multi-Function Displays shows the AC voltage (RMS), current and frequency of up to four (4) line inputs; if one or more inputs are not used, that value shall be displayed as zero. The internal temperature of the unit is also displayed.
Standard AC Power Monitor Screen Layout

The AC Power Monitor page shows the status (voltage, current and frequency) of all AC line inputs. Specific configuration and installation of AC monitors are defined by the boat builder.

![AC Power Monitor Screen Layout](image)

NOTE
This page can vary between installations, as format is determined and/or customizable by the boat builder or owner.

Maintenance

The AC Monitor requires no maintenance. Any service or repair issues should be handled by a factory authorized technician.

General Specifications

Electrical
- **AC Voltage Input**: 90VAC – 264VAC
- **Operating Frequency**: 50/60 Hz
- **CAN Bus Voltage**: +15 VDC (± 0.5)
- **Load Equivalence Number (LEN)**: 1

Mechanical
- **Dimensions**: 7.52” X 8.51” X 2.67”
- **CAN Bus Connectors**: Two (2) Micro-C Male
- **Mounting**: 4 each 4 x 0.16 #6 hardware
- **Orientation**: N/A

Certifications
- **NMEA 2000**: Category B
- **Lloyd’s Register**: Lloyd’s Type Approved, Test Specification #1, Env 2
- **CE**: IEC 60533 Electrical and Electronic Installations in Ships
- **IEC 60945**: Maritime Navigation and Radio Communication Equipment and Systems

Environmental
- **Radiated, RF Field Immunity**: IEC-61000-4-3
- **Electrical Fast Transient/Burst Immunity**: IEC 61000-4-4
- **Voltage Surge Immunity**: IEC 61000-4-5
- **Conducted, Immunity**: IEC 61000-4-6
- **Conducted Emissions**: IEC 60945
- **Voltage Variation Immunity**: IEC 61000-4-11
- **Conducted LF Immunity**: IEC 61000-4-16
- **ESD Immunity**: IEC-61000-4-2
- **Insulation Resistance**: IEC-60092-504
- **Conducted LF Immunity**: IEC 61000-4-16
- **ESD Immunity**: IEC-61000-4-2
- **Operating Temperature**: -40°C to +70°C
- **Storage Temperature**: -40°C to +85°C
- **Vibration**: IEC-60068-2-6 Test Fc
- **Temperature Cycle**: IEC 60945
- **Humidity**: IEC-60068-2-30 Test Db
- **Corrosion**: IEC 60945
- **Weight**: 3.6 lbs (1.64 kg) nominal
Dimensional Specifications: in. [mm]

AC Power Monitor
A3770

Transformer
CR8459-2000-N

For complete detail, please visit the following link: www.crmagnetics.com/Assets/ProductPDFs/CR8400%20Series.pdf
The System Interface Unit Monitor (SIU) allows the user to interface with up to 34 digital signals (DC discrete inputs) to the OctoPlex® system for status and monitoring purposes. The SIU can be configured to perform Discrete I/O Functions, in conjunction with the AC and DC Distribution units.

Product Highlights:
- 34 digital Signal Interface
- Discrete I/O Functions
 - Control AC Breakers
 - Control DC Breakers
 - DC Light Dimming Control
 - Time Interval On/Off
- Active high and active low states
- Can activate alarms

Configuration

Signal Input

Each SIU input signal can be configured to perform a function based on the input level. When an input goes to the “Active” state, the configured function will be performed. The table below describes the “Active” states that any SIU input can be configured for:

<table>
<thead>
<tr>
<th>Input Type</th>
<th>Configuration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low Input</td>
<td>Configured function will be Active when the input Signal is to ground (VDC –ve)</td>
</tr>
<tr>
<td>High Input</td>
<td>Configured function will be Active when the input signal is above 8 VDC (VDC +ve)</td>
</tr>
<tr>
<td>Both</td>
<td>Configured functions will be Active when either a high or low input is detected</td>
</tr>
</tbody>
</table>

* Note: Both (either) State is the Default setting
* Note: Pins 39 & 40 can only be set to Both
Output Message

The SIU broadcasts a NMEA 2000 PGN to the OctoPlex network when the SIU receives a state change on a configured input. This information can be received and processed by any NMEA 2000 device designed to process the Binary Switch Bank Status PGN. All OctoPlex AC, DC and Multi-function Display devices allow processing of SIU signals through Discrete I/O handlers. Each Output Message has a “Normal State” and an “Abnormal State” associated with it. For example, an input could be set up such that the “Normal State” is low and the “Abnormal State” is high. When the input goes high, the Multi-function Display could be configured to provide an indication to the user that a change in the device state has been detected. In some configurations it is required to “Arm” the State/Alarm. For example, a pump inline Flow Sensor, with no flow (pump off) the sensor would be in the Normally Open/Abnormal State. The Alarm would only be activated if the sensor goes Open (Abnormal State), while the pump is running. In this example, the SIU is configured to Arm the Alarm with appropriate Signal State Stimulus.

<table>
<thead>
<tr>
<th>Signal State Stimulus</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>State to Active</td>
<td>Set Alarm state Off when Signal goes Active</td>
</tr>
<tr>
<td>State to Inactive</td>
<td>Set Alarm state On when Signal goes Inactive</td>
</tr>
</tbody>
</table>

Signal Examples

<table>
<thead>
<tr>
<th>Input</th>
<th>Status</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>High Water Alarm</td>
<td>NO</td>
<td>Normal OFF, Circuit closes Abnormal ON - Alarm on State to Active</td>
</tr>
<tr>
<td>Float Switch Power</td>
<td>NC</td>
<td>Normal ON, Circuit Opens Abnormal OFF - Alarm on State to Inactive</td>
</tr>
<tr>
<td>Engine Temperature Alarm</td>
<td>NO</td>
<td>Normal OFF, Circuit Closes Abnormal ON - Alarm on State to Active</td>
</tr>
<tr>
<td>Water Flow Alarm</td>
<td>NC</td>
<td>Normal OFF (Closed when Pump On), Circuit Opens Abnormal ON - Alarm on State Inactive</td>
</tr>
<tr>
<td>Light Switch</td>
<td>NO</td>
<td>Normal Off, Circuit Closes Abnormal ON - trigger DIO for ECB control while ON maintained</td>
</tr>
<tr>
<td>Tank Empty</td>
<td>NO</td>
<td>Trigger a Discrete I/O to Turn OFF the associated pump breaker(s)</td>
</tr>
<tr>
<td>Holding Tank Full</td>
<td>NO</td>
<td>Trigger a Discrete I/O to Turn OFF head flush breaker(s)</td>
</tr>
</tbody>
</table>

Application Example:

![Application Example Diagram]

Use of Blocking Diodes

In applications where a load, controlled by an Electronic Circuit Breaker (ECB), within a DC Power Distribution Unit, can also be turned on by a float switch or another switch outside of the OctoPlex system, a blocking diode must be placed between the ECB output and the load it is controlling. Failure to install the blocking diode will result in hardware malfunction in situations where the float switch is turning the load/pump ON while the ECB for the load is OFF (ECB error of Abnormal High/Back feed). This may be applicable for sump pumps as well.
Blocking Diodes Example:

![Diagram of system interface unit model](image)

<table>
<thead>
<tr>
<th>DC Panel/ECB</th>
<th>Bilge Pump</th>
<th>CAN Bus A</th>
<th>CAN Bus B</th>
</tr>
</thead>
<tbody>
<tr>
<td>+12/24 VDC</td>
<td>+12/24 VDC</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

#### Part Number	Diodes per Unit	Notes
A1935 | 2 | Standard Unit
A1945 | 4 | Special Order
A1940 | 10 | Special Order

Installation

The SIU is designed to be installed in a protected, non-explosive area of the vessel. Take precautions to install the SIU in an area that will be away from direct exposure to the weather and combustible fumes.

Connections

The terminals available for use in the Deutsch DRC16-40S connectors are:

<table>
<thead>
<tr>
<th>Wire Gauge</th>
<th>Contact Type</th>
<th>Deutsch Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>14 to 18</td>
<td>Solid</td>
<td>0462-201-16141</td>
</tr>
<tr>
<td>14 to 18</td>
<td>Stamped/Formation</td>
<td>1062-16-0122</td>
</tr>
<tr>
<td>14 to 18</td>
<td>Stamped/Formation</td>
<td>1062-16-0144</td>
</tr>
</tbody>
</table>

Recommended wire gauge is 16. Limit wire length to 50 feet.

Deutsch recommends a torque of 25 to 28 in/lbs be applied to the center mounting screw during assembly.
Connections (continued)

The SIU can be powered using one power input pin; the SIU allows for up to three (3) different power input pins for redundancy purposes:

<table>
<thead>
<tr>
<th>Connector Pin Number</th>
<th>+ 12 VDC (5A Fuse)</th>
<th>+ 24 VDC (5A Fuse)</th>
<th>DC Return</th>
<th>Discrete Inputs</th>
</tr>
</thead>
<tbody>
<tr>
<td>1, 2, 3</td>
<td>YES</td>
<td>YES</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>8, 9, 10</td>
<td>N/A</td>
<td>N/A</td>
<td>YES</td>
<td>N/A</td>
</tr>
<tr>
<td>4-7, 11-40</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>YES</td>
</tr>
</tbody>
</table>

NOTE

1 2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 18 19 20
21 22 23 24 25 26 27 28 29 30
31 32 33 34 35 36 37 38 39 40

The SIU can be powered using one power input pin; the SIU allows for up to three (3) different power input pins for redundancy purposes:

CAN Connections

Two male Micro-C connectors are provided to the right side of the System Interface Unit Monitor for connection to the primary and secondary CAN bus via drop cables.

<table>
<thead>
<tr>
<th>Connector Pin Number</th>
<th>+ 12 VDC (5A Fuse)</th>
<th>+ 24 VDC (5A Fuse)</th>
<th>DC Return</th>
<th>Discrete Inputs</th>
</tr>
</thead>
<tbody>
<tr>
<td>1, 2, 3</td>
<td>YES</td>
<td>YES</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>8, 9, 10</td>
<td>N/A</td>
<td>N/A</td>
<td>YES</td>
<td>N/A</td>
</tr>
<tr>
<td>4-7, 11-40</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>YES</td>
</tr>
</tbody>
</table>

Operation

Standard System Interface Unit Monitor (SIU) Screen Layout

The SIU screen shows the 34 Discrete I/O indicators that are being monitored by the SIU. These indicators can not be acknowledged by the user; up to Qty. 10 also appear on the bottom of most pages.

Maintenance

The System Interface Unit Monitor was designed to require no maintenance. Any service or repair issues should be handled by a factory authorized technician.
General Specifications

Electrical
- **Power Input**: 10 VDC – 32 VDC
- **Power Consumption**: 100 mA Max (@ 28 VDC)
- **DC Signal Input**: Ground; 12 VDC; 24 VDC for each input
- **CAN Bus Voltage**: +15 VDC (± 0.5)
- **Load Equivalence Number (LEN)**: 1

Certifications
- NMEA 2000
- Lloyd’s Register
- Category B, Lloyd’s Type Approved, Test Specification #1, Env 2
- IEC 60533 Electrical and Electronic Installations in Ships
- IEC 60945 Maritime Navigation and Radio Communication Equipment and Systems
- CE

Environmental
- **Radiated, RF Field Immunity**: IEC-61000-4-3
- **Electrical Fast**: IEC 61000-4-4
- **Transient/Burst Immunity**: IEC 61000-4-5
- **Voltage Surge Immunity**: IEC 61000-4-5
- **Conducted, Immunity**: IEC 61000-4-6
- **Conducted Emissions**: IEC 60945
- **Voltage Variation Immunity**: IEC 61000-4-11
- **Conducted LF Immunity**: IEC-61000-4-16
- **ESD Immunity**: IEC-61000-4-2
- **Insulation Resistance**: IEC-60092-504
- **Operating Temperature**: -40°C to +70°C
- **Storage Temperature**: -40°C to +85°C
- **Vibration**: IEC-60068-2-6 Test Fc
- **Temperature Cycle**: IEC 60945
- **Humidity**: IEC-60068-2-30 Test Db
- **Corrosion**: IEC 60945
- **Weight**: 1.6 lbs (0.73 kg) nominal

Mechanical
- **Dimensions**: 5.89” X 4.74” X 2.95”
- **CAN Bus Connectors**: Two (2) Micro-C Male
- **Mounting**: Four (4) each 4 x 0.16 #6 hardware
- **Orientation**: N/A

Dimensional Specifications: in [mm]

System Interface Unit Monitor (SIU) A3470

- **Connector, Signal / Power Input, 40 Pin, Deutsch PN DRC 10-40P**
- **Mounting Surface**: 0.16 [4.06]
- **0.16 Wide Slot for #6 Screw**

sales@carlingtech.com | www.carlingtech.com | 61
Installing an NMEA 2000® network consists of inter-connecting NMEA 2000 electronic devices using plug-and-play cables and connectors. The following pages provide a brief description of how to setup a NMEA 2000 network using five basic steps:

1. Cable and Connector Network Basics
2. Installing Terminators
3. Supplying Power
4. Grounding the Network
5. Checking the Network

Please note that this installation guide contains a brief description of the basic concepts of installing an NMEA 2000 network and Carling Technologies suggests that you consult a trained professional for any installation. You can learn more about installing NMEA 2000 networks by contacting the National Marine Electronics Association (NMEA) at www.nmea.org and consulting the following documents:

- NMEA 2000 Standard for Serial-Data Networking of Marine Electronic Devices
- NMEA Installation Standards

Cable and Connector Network Basics

Network Topology

The NMEA 2000 cable system uses a trunk (sometimes referred to as the backbone) and drop line topology as shown in Figure 1.

The NMEA 2000 cable system includes five wires within a single waterproof cable: two signal wires, power and ground wires, and a drain wire. The drain wire shields the signal, power, and ground wires from external Radio Frequency Interference (RFI) and helps reduce RFI emission from the cable. You can connect devices using one of three cable options:

Mini - This is commonly used for the trunk line on the network because of its greater current carrying capacity (8 amps) as opposed to Micro cable (4 amps). Mini cable has an outside diameter in the range from 0.41 to 0.49 inches. Its maximum installed bend radius is 7x the cable diameter. You can also use this type of cable for drop lines.

Mid - This is commonly used for smaller networks as either the network trunk line or as drop lines. Mid cable and connectors are rated to 4 amps just like the Micro cable, however the larger diameter power conductors within the Mid cable provides for less voltage drop over Micro cable, especially for long runs. The diameter of the Mid cable is 0.33 inches.

Micro - This cable type is typically used as the drop line connecting devices to the main trunk line with an outside diameter in the range from 0.24 to 0.28 inches. Micro cable has a smaller diameter and is more flexible than mini cable with an installation bend radius of 7x the cable diameter. Smaller networks can use this type of cable for both the trunk and drop lines.
You construct the trunk line using double-ended cordsets connected between tees or taps. One end of the cordset has a male connector with male pins while the other end of the cordset has a female connector and female receptacles. The connectors are keyed so they can only connect to each other in one way. As an alternative to double-ended cordsets, you can make your own trunk line using bulk cable and field-attachable connectors. If you decide to add equipment later, you can simply disconnect a cordset from a tee, add another tee directly to the existing tee, re-connect the cordset and add the new component to the system using a drop cable. Alternatively, you could cut the trunk line, add two field-attachable connectors and insert a new tee. Trunk lines can also be run up to watertight bulkheads and connected to a waterproof bulkhead feed-thru connector to maintain the integrity of watertight compartments.

To drop off the trunk line, you connect a device using a tee connector. Daisy chaining of devices is not allowed, as it is a requirement to be able to remove a component from the network without affecting any other device. This allows you to remove a device for servicing while the rest of the network remains operational. Multi port units are also available where instruments tend to be clustered, around the helm for example.

Maximum Cable Distance

The cable distance between any two points (a point being an electronic product or terminator) must not exceed 250 meters (820 feet) for a system based on the Mini or Mid trunk cable or 100 meters (328 feet) for a system based on a Micro trunk cable.

For most cases, the maximum distance should be measured between termination resistors. However, if the distance from a trunk line tee to the farthest device connected to the trunk line is greater than the distance from the tee to the nearest terminating resistor (TR), then you MUST include the drop line length as part of the cable length in your maximum cable distance calculation. Figure 2 shows an example where both 5 meter drops must be included in the maximum cable distance since the drops are longer than the distance from the tee to termination resistor.

Cumulative Drop Line Length

The cumulative drop line length refers to the sum of all drop lines, Mini, Mid or Micro cable in the cabling system. This sum cannot exceed 78 meters (256 feet). Figure 3 shows an example using four drop tees and two multiport drops to attach 11 devices to the trunk line. The cumulative drop line length is 37 meters (122 feet) and no single device is more than 6 meters (20 feet) from the trunk line.
Maximum Drop Line Length
The maximum cable distance from any device on a branching drop line to the trunk line is 6 meters (20 feet).

Maximum Number of Devices
A maximum of 50 physical devices shall be connected to the network, and the disconnection of any device shall not interrupt any other device on the network.

NMEA 2000 Cable
The Mini, Mid and Micro cables contain five wires: One twisted pair (red and black) for network power, one twisted pair (blue and white) for signal and a drain wire (bare).

The following table shows the color, name, and usage for each wire contained within the cable.

<table>
<thead>
<tr>
<th>Color</th>
<th>Name</th>
<th>Usage</th>
</tr>
</thead>
<tbody>
<tr>
<td>White</td>
<td>NET-H</td>
<td>Signal</td>
</tr>
<tr>
<td>Blue</td>
<td>NET-L</td>
<td>Signal</td>
</tr>
<tr>
<td>Bare</td>
<td>SHIELD</td>
<td>Signal</td>
</tr>
<tr>
<td>Black</td>
<td>NET-C</td>
<td>Ground</td>
</tr>
<tr>
<td>Red</td>
<td>NET-S</td>
<td>Power</td>
</tr>
</tbody>
</table>

NMEA 2000 Connectors
Connectors attach cables to devices or other components of the NMEA 2000 cable system. This allows the network to be completely “plug-and-play”. Connections can be made with pre-molded cordsets or with field-attachable connectors. The following diagram shows the pins found within Mini connector and the Micro and Mid connector and the corresponding wire colors for those pins.

Installing Terminators
Termination resistors are attached to each end of the trunk cable to reduce reflections of the communication signals on the network. If you do not use termination resistors as described, the network will not operate properly. Termination resistors are typically connected directly to the last tee on the trunk line although they can be connected to a cordset extending from the last tee on a trunk line. Inline terminators are also available and they are used to terminate the network at the last product.

Supplying Power
(OctoPlex Powered by Network Power Supply)

End-Powered Network
End-powered networks are typically seen on smaller vessels with only a few NMEA 2000 devices. Figure 4 shows an end-powered network.

Middle-Powered Network
A middle-powered network is typically found on larger vessels and is any network where the power is connected to the network at some location other than at the end. This network consists of two legs, one leg extending in each direction from the power insertion point. Figure 5 shows a middle-powered network.
Maximum Power Supply Voltage Drop

NMEA 2000 network is designed to work properly as long as there is no more than a 1.5 volt difference in the power supply voltage between any two devices on the network. Therefore, you should perform an estimate of the voltage drop across a network using the following equation:

\[\text{Voltage Drop} = 0.1 \times \text{Network Loads} \times \text{Network Length} \times \text{Cable Resistance}/100 \]

Where: Network Loads is sum of Load Equivalent Numbers (LEN) for all devices (see device nameplate) Network Length is in meters Cable resistance is in ohms/100 meters

Power supply voltage drop estimates resulting in less than 1.5 volts across the entire network require no further analysis. Likewise, estimates ranging between 1.5 and 3.0 volts require no further analysis as long as a mid-powered network is used. Occasionally, estimated power supply voltage drops will occur outside these limits and will require further consideration through detailed calculations by certified technicians.

Checking Your Network

Verify that the network has been correctly designed and installed by reviewing the following checklist:

- Number of devices does not exceed 50
- Maximum Mini cable distance between any two devices does not exceed 200 meters (656 feet)
- Maximum Micro/Mid cable distance between any two devices does not exceed 100 meters (328 feet)
- Maximum cumulative drop line length does not exceed 78 meters (256 feet)
- No drop should be greater than 6 meters (20 feet)
- Termination resistors are installed on both ends of the trunk
- The network is grounded at a single location
- The SHIELD wire is connected to a single point, the supply ground

If you are having difficulties with the network make sure to check the following most common network problems:

- More or less than two terminating resistors
- Loose connections, make sure that all connectors are securely fastened
- Excessive trunk line length-especially with Micro cable
- Excessive drop line cable length
- Improper shield and ground connection at the power supply
- Shorts and opens in field-attachable connectors
- Failure to perform power distribution calculations for new installations and when adding new devices
- Using a typical device current rather than maximum current for power distribution calculations

In order to insure the proper installation and configuration of an NMEA 2000 network, it is a good idea to have available at least one N2KMeter. The N2KMeter* greatly simplifies network diagnostics and can detect many fault conditions including:

- Opens and shorts
- Incorrect topology
- Bad nodes & Bad termination
- Improper shield connection
- Intermittent problems
- Excessive scan rate
- Common mode voltage

Note: The NMEA 2000 Network Installation Guide is a copy-righted document from the Maretron 2010 Product Catalog and has been approved by Maretron for use in the OctoPlex Installation & Operation Guide

* See Maretron 2010 Product Catalog for N2KMeter information. www.maretron.com
The OctoPlex® System can be reset by removing power from all OctoPlex components. Tank Adapters receive their power directly from the network. These components can be reset by pulling out the breakers in the Network Power Supply to remove power from the bus. All other components receive their power from sources other than the network/bus. These components (DC Power Distribution Units, AC power Distribution Units, Battery Monitors, System Interface Unit Monitors, AC Power Monitor, Network Power Supply, Multi Function Displays) must have their power disabled by removing fuses or turning off the main breakers installed by the boat builder which supply their power.

MULTI-FUNCTION DISPLAY

<table>
<thead>
<tr>
<th>Symptoms</th>
<th>Possible Causes</th>
<th>Tests / Remedies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multi-Function Display is blank</td>
<td>Multi-Function Display backlight is OFF</td>
<td>Touching any part of the display will “wake” the Multi-Function Display up.</td>
</tr>
<tr>
<td></td>
<td>No AC or DC power reaching Multi-Function Display</td>
<td>Verify that there is 24VDC power at the input connector</td>
</tr>
<tr>
<td>Multi-Function Display operation/refresh rate is very slow</td>
<td>Communication problem</td>
<td>Reset the system by turning off all AC and DC power to the Power Supply, SIU, Battery Monitor, and DC Units. Cycle power on Multi-Function Display.</td>
</tr>
</tbody>
</table>
| Multi-Function Display has locked up, does not respond when “touched” | 1. High network traffic
2. Software malfunction
| Pages on the Multi-Function Display do not show any or correct data | Data source device is offline or not connected. Configuration file error. | Check device for power at the drop and connection to the network. Correct configuration file. |
| Multi-Function Display is rebooting by itself | Multi-Function Display power is cycling | Check Multi-Function Display Power Supply. |

BATTERY MONITOR

<table>
<thead>
<tr>
<th>Symptoms</th>
<th>Possible Causes</th>
<th>Tests / Remedies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Battery Monitor displays no data or incorrect data</td>
<td>No DC power reaching Battery Monitor</td>
<td>The Battery Monitor requires DC power to operate. Check to see that battery monitor is connected/wired properly. The blue wire must be connected to 12/24VDC. The black wire must be connected to Ground</td>
</tr>
<tr>
<td></td>
<td>Bad drop cable</td>
<td>If the cable is confirmed to be bad, replace it. Bad cables are often a result of wire tires forcing the cables into tight bends.</td>
</tr>
<tr>
<td></td>
<td>Improper wiring of Battery Monitor</td>
<td>Refer to Battery Monitor setup.</td>
</tr>
</tbody>
</table>

NOTE

If the unit displays nothing or incorrect/invalid data, verify the instance number is correct.
DC POWER DISTRIBUTION UNIT

<table>
<thead>
<tr>
<th>Symptoms</th>
<th>Possible Causes</th>
<th>Tests / Remedies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multi-Function Displays indicate DC breakers are inactive</td>
<td>No DC power reaching DC Unit</td>
<td>If no DC power is reaching the DC Unit, the breakers can not be turned on from the Multi-Function Displays and will be displayed as inactive. Check to ensure that the boat’s main DC breakers are ON. There is also a main breaker within the DC Unit, if it is OFF, all of the branch breakers in the unit will be inactive. Once the main breaker in the unit is turned ON (must be done manually), the branch breakers will become active and controllable.</td>
</tr>
<tr>
<td></td>
<td>Improper Multi-Function Display configuration</td>
<td>Refer to Multi-Function Display setup.</td>
</tr>
<tr>
<td></td>
<td>Faulty processor board in DC Unit</td>
<td>Try removing ECB's from unit and replacing with known working ECB's to eliminate the possibility of a bad ECB causing a communication problem.</td>
</tr>
<tr>
<td>DC Breakers trip immediately when turned on regardless of load.</td>
<td>ECB current rating too low</td>
<td>Check the configuration of the ECB to confirm that the current rating is properly set. Adjust if necessary.</td>
</tr>
<tr>
<td></td>
<td>Faulty ECB Short Circuit in external wiring</td>
<td>Attempt swapping out the suspect ECB with a known good ECB. If the problem is resolved, the ECB is faulty and needs to be replaced. Remove round Deutsch plugs at bottom of box & reset breaker if fault disappears check circuit for short.</td>
</tr>
<tr>
<td>DC Distribution Unit Phantom Breaker tips</td>
<td>Low input power voltage to unit < 9VDC</td>
<td>Check input voltage at power input lug to DC Unit.</td>
</tr>
<tr>
<td>DC Load Device low voltage/slow behavior</td>
<td>ECB may have dimming applied</td>
<td>Check output voltage at pin Check TS ECB button for present settings of Default Dimming value and dimming allowed.</td>
</tr>
</tbody>
</table>

NETWORK POWER SUPPLY

<table>
<thead>
<tr>
<th>Symptoms</th>
<th>Possible Causes</th>
<th>Tests / Remedies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Network Power Supply Service Light</td>
<td>Input voltage is out of range Low or High</td>
<td>Check voltages at the input plug. Remove/replace the top Deutsch connector (AC input)</td>
</tr>
<tr>
<td></td>
<td>Internal input to output out of range</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Internal failure detected.</td>
<td>Call service center.</td>
</tr>
</tbody>
</table>

NOTE

If the unit displays nothing or incorrect/invalid data, verify the instance number is correct.
AC POWER DISTRIBUTION UNIT

<table>
<thead>
<tr>
<th>Symptoms</th>
<th>Possible Causes</th>
<th>Tests / Remedies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multi-Function Displays indicate AC breakers are inactive</td>
<td>Main breakers in AC Unit are turned OFF.</td>
<td>If the main breaker within an AC Unit is OFF, all of the branch breakers in the unit will be inactive. Once the main breaker in the unit is turned ON (either manually or via the Multi-Function Display), the branch breakers will become active and controllable.</td>
</tr>
<tr>
<td></td>
<td>Faulty processor board in AC Unit</td>
<td>Processor board may require replacement. If it is an AC problem, solenoids should be checked for shorts between leads (proper resistance is ~78 Ohms for single and ~39 for double), which could damage AC processor board.</td>
</tr>
<tr>
<td>AC Distribution Unit Load Buttons do not respond to touch</td>
<td>AC power to the distribution unit is not present.</td>
<td>Check shore and/or genset input. Power Present lights on the upper right corner of unit will be ON if power is present.</td>
</tr>
<tr>
<td></td>
<td>Solenoid not firing.</td>
<td>Swap Solenoids if bad</td>
</tr>
<tr>
<td></td>
<td>Breaker trip Coil.</td>
<td>Swap breaker</td>
</tr>
<tr>
<td></td>
<td>Processor board faulty.</td>
<td>Swap processor board</td>
</tr>
<tr>
<td>AC breakers do not appear to control circuits</td>
<td>Solenoid misfire / Faulty solenoid</td>
<td>It is possible that an AC breaker did not turn completely on when solenoid was activated. Attempt to turn the AC breaker on again, if AC breaker repeatedly trips or does not turn on when activated, check solenoid for problems.</td>
</tr>
<tr>
<td>AC breakers trip immediately when turned on regardless of load</td>
<td>Solenoid not firing completely or breaker stiff</td>
<td>Check all solenoid connectors on the AC Unit in question to confirm their proper location. Exercise breaker. Check for dead short on load.</td>
</tr>
</tbody>
</table>

SYSTEM INTERFACE UNIT MONITOR (SIU)

<table>
<thead>
<tr>
<th>Symptoms</th>
<th>Possible Causes</th>
<th>Tests / Remedies</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIU inputs do not behave as expected (monitoring and/or discrete inputs controlling breakers)</td>
<td>No DC power reaching SIU</td>
<td>The SIU requires DC power to operate, it does not receive power from the network. Check to see that the SIU is connected/ wired properly. Pin 1, 2, or 3 must be connected to and receiving 24VDC. Pin 8, 9, or 10 must be connected to Ground.</td>
</tr>
<tr>
<td></td>
<td>SIU is not installed properly or miswired</td>
<td>The SIU requires DC Power and Ground to operate correctly. The signal inputs should use the same reference (DC Power or Ground) as what is being used to power the SIU.</td>
</tr>
<tr>
<td></td>
<td>Improper Multi-Function Display configuration</td>
<td>Refer to Multi-Function Display setup.</td>
</tr>
</tbody>
</table>

If the unit displays nothing or incorrect/invalid data, verify the instance number is correct.
AC POWER MONITOR

<table>
<thead>
<tr>
<th>Symptoms</th>
<th>Possible Causes</th>
<th>Tests / Remedies</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC Monitor displays no data or incorrect data</td>
<td>No AC power reaching AC monitor</td>
<td>The AC Monitor requires an AC voltage for the line 1/3 connector. It does not receive power from the network. Check this connector to see that an AC voltage is being supplied.</td>
</tr>
<tr>
<td></td>
<td>Bad drop cable</td>
<td>Use the suspected component with only one drop cable connected at a time. If one of the cables appears to be bad, attempt using the good cable on the other connector to confirm that the cable is the problem and not one of the component's connectors. If the cable is confirmed to be bad, replace it. Bad cables are often a result of wire tires forcing the cables into tight bends.</td>
</tr>
<tr>
<td></td>
<td>Improper wiring of AC Monitor or Current Transformers</td>
<td>Refer to AC Power Monitor setup.</td>
</tr>
</tbody>
</table>

NMEA 2000® Parameter Group Numbers

<table>
<thead>
<tr>
<th>PGN Type</th>
<th>PGN #</th>
<th>PGN Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protocol PGNs</td>
<td>059392</td>
<td>ISO Acknowledge</td>
</tr>
<tr>
<td></td>
<td>059904</td>
<td>ISO Request</td>
</tr>
<tr>
<td></td>
<td>060928</td>
<td>ISO Address Claim</td>
</tr>
<tr>
<td></td>
<td>056240</td>
<td>ISO Address Command</td>
</tr>
<tr>
<td></td>
<td>126208</td>
<td>NMEA Request/Command/Acknowledge</td>
</tr>
<tr>
<td>Response PGNs</td>
<td>126464</td>
<td>PGN List (Transmit/Receive)</td>
</tr>
<tr>
<td></td>
<td>126996</td>
<td>Product Information</td>
</tr>
<tr>
<td></td>
<td>126998</td>
<td>Configuration Information</td>
</tr>
<tr>
<td></td>
<td>127508</td>
<td>Battery Status (Battery Monitor only)*</td>
</tr>
<tr>
<td>Periodic PGNs</td>
<td>127501</td>
<td>Binary Switch Bank Status **</td>
</tr>
<tr>
<td>Proprietary PGNs</td>
<td>61184</td>
<td>Addressable Single Frame</td>
</tr>
<tr>
<td></td>
<td>65300</td>
<td>Global Single Frame</td>
</tr>
<tr>
<td></td>
<td>126720</td>
<td>Addressable Fast Packet</td>
</tr>
<tr>
<td></td>
<td>130921</td>
<td>Global Fast Packet</td>
</tr>
<tr>
<td></td>
<td>65301</td>
<td>Global Single Frame (AC Monitor only)</td>
</tr>
</tbody>
</table>

* multiple device and data instances per unit for the Battery Monitor
** multiple device and data instances per unit for the System Interface Unit Monitor

If the unit displays nothing or incorrect/invalid data, verify the instance number is correct.
Appendix: Multi-Function Display

Hot Button
A Hot Button is used for navigating around the OctoPlex® system. Touch the desired Hot Button to navigate through selected functions.

Switch/Breaker Button Indicators
OctoPlex Switch/Breaker Buttons are displayed as indicators with a pre-defined color scheme. Touching a Breaker button will change the state of the load.

<table>
<thead>
<tr>
<th>Color Code Guide</th>
<th>Breaker Status</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>![Load Icon]</td>
<td>Not Active; Unavailable</td>
<td>This is a switch/breaker that is currently not active. The distribution panel is most likely not receiving any power (AC or DC) or the distribution panel's main breaker is in the OFF position. This indication can also be present if communication to the multi-function display is lost.</td>
</tr>
<tr>
<td>![Load Icon]</td>
<td>Active; OFF</td>
<td>This is a switch/breaker that is active, but currently in the OFF position. Pressing the button will turn the breaker ON.</td>
</tr>
<tr>
<td>![Load Icon]</td>
<td>Active; ON</td>
<td>This is a switch/breaker which is active and currently in the ON position. Pressing the button will turn the breaker OFF.</td>
</tr>
<tr>
<td>![TRIP Icon]</td>
<td>Active; TRIPPED</td>
<td>This is a switch/breaker that is active, but has been tripped by an over-current situation. Pressing and holding the button will bring up a sub menu, which allows the user to reset the breaker (turn OFF) and then turn the breaker back ON with an additional press.</td>
</tr>
<tr>
<td>![Load Icon]</td>
<td>Active; Locked OFF</td>
<td>This is a switch/breaker that has been locked in the OFF position. The 'UNLOCK' button can be used to unlock this breaker.</td>
</tr>
<tr>
<td>![Load Icon]</td>
<td>Active; Locked ON</td>
<td>This is a switch/breaker that has been locked in the ON position. The 'UNLOCK' button can be used to unlock this breaker.</td>
</tr>
<tr>
<td>![Load Icon]</td>
<td>Active; Group OFF</td>
<td>This is a switch/breaker that has been setup with Group Control OFF.</td>
</tr>
<tr>
<td>![Load Icon]</td>
<td>Active; Group ON</td>
<td>This is a switch/breaker that has been setup with Group Control ON.</td>
</tr>
<tr>
<td>![Load Icon]</td>
<td>Active; Load Shedding OFF</td>
<td>This is a breaker with Load Shedding OFF (AC Only).</td>
</tr>
<tr>
<td>![Load Icon]</td>
<td>Active; Load Shedding ON</td>
<td>This is a breaker with Load Shedding ON (AC Only).</td>
</tr>
<tr>
<td>![Load Icon]</td>
<td>Active; Local Override OFF</td>
<td>DC Unit switched into Local Mode; Electronic Circuit Breaker (ECB) toggle switch in the OFF Position (DC Only).</td>
</tr>
<tr>
<td>![Load Icon]</td>
<td>Active; Local Override ON</td>
<td>DC Unit switched into Local Mode; Electronic Circuit Breaker (ECB) toggle switch in the ON Position (DC Only).</td>
</tr>
</tbody>
</table>
Appendix: Multi-Function Display

Status Indicators

Status Indicators are indicators that appear on the bottom of the screen or on selected pages. They are not buttons that the user can not acknowledge; these are status indications from the System Interface Unit Monitor (SIU) that are transmitted on the OctoPlex® system.

<table>
<thead>
<tr>
<th>Color Code Guide</th>
<th>Breaker Status</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Inactive</td>
<td>This is a system status indication that is currently inactive.</td>
</tr>
<tr>
<td></td>
<td>Active; OFF</td>
<td>This is a system status indication that is currently active, but is not ON or in an alert condition.</td>
</tr>
<tr>
<td></td>
<td>Active; ON</td>
<td>This is a system status indication that is currently active, and is ON.</td>
</tr>
<tr>
<td></td>
<td>Active; ALERT</td>
<td>This is a system status indication that is currently active, and is in an alert condition.</td>
</tr>
</tbody>
</table>

These Status Indicators below are commonly found at the bottom of each page in the Touchscreen. In this situation, all the indicators are active and ‘OFF’.

Banner Alerts appear at the bottom of the screen to alert the user of an active alert. It allows the user to acknowledge the alert and depending on how the parameters are set. The Alert Table Editor will determine how to address the alarm/alert.

Manufacturer reserves the right to change product specification without prior notice.