Available Choices of Circuit Protection

Carling Technologies offers three types of circuit protection devices: thermal circuit protectors, hydraulic/magnetic circuit protectors/breakers and equipment leakage circuit breakers. This catalog features hydraulic/magnetic circuit protection products. For details related to our thermal circuit protection product line, please see our thermal circuit protection catalog.

Thermal circuit protectors utilize a bimetallic strip electrically in series with the circuit. The heat generated by the current during an overload deforms the bimetallic strip and trips the breaker. Thermal protectors have a significant advantage over fuses in that they can be reset after tripping. They can also be used as the main ON/OFF switch for the equipment being protected. However, thermal breakers have some disadvantages. They are, in effect, “heat sensing” devices, and can be adversely affected by changes in ambient temperature. When operating in a cold environment, they will trip at a higher current level. When operating in a hot environment, they will “nuisance trip” at a lower current level resulting in unwanted equipment shut downs.

Hydraulic/magnetic circuit protectors/breakers provide highly precise, reliable and cost effective solutions to most design problems. They have the advantages of thermal breakers but none of their disadvantages. The hydraulic/magnetic circuit breaker is considered to be temperature stable and thus is not appreciably affected by changes in ambient temperature. It’s over-current sensing mechanism reacts only to changes of current in the circuit being protected. It has no “warm-up” period to slow down its response to overload. It has no “cool-down” period after overload before it can be reset. The characteristics of a hydraulic/magnetic circuit breaker can be tailored in four separate areas: the desired circuit; the trip point (in amperes); the time delay (in seconds); and the inrush handling capacity of the breaker. These factors can be varied with relatively little impact on the short circuit capability of the breaker. Typically, hydraulic/magnetic circuit breakers are available with a choice of three different trip time delay curves: slow, medium and long. These choices provide the designer with a high level of design flexibility when matching the breakers trip time delay curves to other circuit protection devices in a cascade, or discriminating circuit. In addition, special hi-inrush constructions are available for equipment with severe inrush characteristics.

Equipment leakage circuit breakers function as hydraulic/magnetic circuit breakers, offering customized overload and short circuit protection. In addition, they sense and guard against faults to ground using innovative electronics technologies. With the exception of small amounts of leakage, the current returning to the power supply will be equal to the current leaving the power supply. If the difference between the current leaving and returning through the earth leakage circuit breaker exceeds the leakage sensitivity setting, the breaker trips and it’s LED illuminates. The LED gives a clear indication that the trip occurred as a result of leakage to ground. This protection helps prevent serious equipment damage and fire.

Carling Technologies’ Hydraulic/Magnetic Circuit Breakers

Carling Technologies’ hydraulic/magnetic circuit breakers are current sensing devices employing a time proven hydraulic magnetic design. Their precision mechanisms are temperature stable and are not adversely affected by temperature changes in their operating environment. As such, derating considerations due to temperature variations are not normally required, and heat-induced nuisance tripping is avoided.

Features

- A trip-free mechanism, a safety feature, makes it impossible to manually hold the contacts closed during overcurrent or fault conditions.
- Worldwide safety agency approvals are available.
- Current ratings to 700 Amps and rated voltages to 600 VAC are available.
- A common trip linkage between all poles, another safety feature, ensures that an overload in one pole will trip all adjacent poles.
- Industry standard dimensions, mounting and current ratings provide maximum application versatility.
- Series trip, mid-trip and switch only (with or without auxiliary switch), remote shutdown, shunt trip, relay trip and dual coil circuit options are offered.
- Handle actuators, solid color rocker actuators, illuminated rocker actuators and the exclusive Visi-Rocker® two-color rocker actuators, allow design flexibility and contemporary panel styling.
- 35mm DIN Rail back panel mounting available for world market applications.
Applications / What Makes A Magnetic Circuit Breaker Trip

Typical Applications

Magnetic circuit breakers protect wiring, motors, generators, transformers, solid state systems, computers, telecommunications systems, micro-processors, peripheral and printing devices, office machines, machine tools, medical and dental equipment, instrumentation, vending machines, industrial automation and packaging systems, process control systems, lamps, ballasts, storage batteries, linear and switching power supplies, as well as marine control panels and numerous other applications.

Generally, wherever precise and reliable circuit protection is required, a magnetic circuit breaker is specified.

What Makes a Magnetic Circuit Breaker Trip

The most common magnetic circuit breaker configuration is called “Series Trip”. It consists of a current sensing coil connected in series with a set of contacts. (Fig. 1)

Inside the coil is a non-magnetic delay tube, housing a spring-biased, moving, magnetic core. An armature links the contacts to the coil mechanism, which functions as an electro magnet. When the contacts are open, there is no current flow through the circuit breaker, and no electro-magnetic energy is developed by the coil. When the contacts are closed, current flow begins. (Fig. 2)

As the normal operating or “rated” current flows through the sensing coil, a magnetic field is created around that coil. When the current flow increases, the strength of the magnetic field increases, drawing the spring-biased, movable, magnetic core toward the pole piece. As the core moves inward, the efficiency of the magnetic circuit is increased, creating an even greater electro-magnetic force. When the core is fully “in”, maximum electro-magnetic force is attained, the armature is attracted to the pole piece, unlatching a trip mechanism, thereby opening the contacts. (Fig. 3)

Under short circuit conditions, the resultant increase in electro-magnetic energy is so rapid, that the armature is attracted without core movement, allowing the breaker to trip without an induced delay. This is called “instantaneous trip”. It is a safety feature which results in a very fast trip response when most needed. (Fig. 4)